Бигравитация в гамильтоновом формализме


Цитировать

Полный текст

Аннотация

Одним из путей решения проблемы темной энергии Вселенной является теория бигравитации, содержащая два метрических тензора, каждый из которых минимально взаимодействует со своим набором полей материи. Лагранжиан бигравитации является суммой двух лагранжианов общей теории относительности с разными гравитационными постоянными и разными наборами полей материи, а также потенциала взаимодействия двух метрик, не содержащего производных. В общем случае такая теория содержит 8 гравитационных степеней свободы: безмассовый гравитон, массивный гравитон и дух. Специальный выбор потенциала, предложенный де Рам, Габададзе и Толи (dRGT), позволяет избавиться от духовой степени свободы. Однако потенциал dRGT построен с помощью матричного квадратного корня и не является явной функцией от компонент двух метрик. Одним из путей обхода этой трудности является использование тетрадных переменных. В докладе рассмотрен альтернативный подход, в котором предполагается существование потенциала, выраженного дифференцируемой функцией компонент(3 + 1)-разложения двух метрик, затем выводятся свойства этой функции, необходимые и достаточные для исключения духовой степени свободы. Результаты получены с помощью анализа уравнений связи, возникающих в бигравитации, путем вычисления скобок Пуассона между связями и гамильтонианом. Основными гравитационными переменными являются две индуцированные на гиперповерхностях пространства метрики и сопряженные им импульсы, кроме того, в формализме в качестве вспомогательных переменных присутствуют функции смещения и сдвига обеих метрик. После этого исключения 3-х вспомогательных переменных остается набор из 4-х связей первого рода, порождающих диффеоморфизмы пространства-времени, относительно которых бигравитация инвариантна, и 2-х связей второго рода, исключающих духовую степень свободы. Получены следующие требования к потенциалу: 1) потенциал удовлетворяет системе линейных дифференциальных уравнений первого порядка относительно всех своих аргументов; 2) потенциал удовлетворяет однородному уравнению Монжа-Ампера относительно 4-х вспомогательных переменных; 3) гессиан потенциала относительно 3-х вспомогательных переменных не вырожден.

Об авторах

Владимир Олегович Соловьев

Институт физики высоких энергий, НИЦ «Курчатовский институт»

Email: Vladimir.Soloviev@ihep.ru
(д.ф.-м.н., с.н.с.; Vladimir.Soloviev@ihep.ru), старший научный сотрудник, отдел теоретической физики Россия, 142281, г. Протвино, Московская обл., пл. Науки, 1

Список литературы

  1. Соловьев В. О. Бигравитация в гамильтоновом формализме / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.-корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 334-335.
  2. Rosen N. General Relativity and Flat Space. I // Phys. Rev., 1940. vol. 57, no. 2. pp. 147-150. doi: 10.1103/physrev.57.147.
  3. Rosen N. General Relativity and Flat Space. II // Phys. Rev., 1940. vol. 57, no. 2. pp. 150-153. doi: 10.1103/physrev.57.150.
  4. Rosen N. Flat-space metric in general relativity theory // Ann. of Phys., 1963. vol. 22, no. 1. pp. 1-11. doi: 10.1016/0003-4916(63)90293-8.
  5. Rosen N. A bi-metric theory of gravitation // Gen. Rel. Grav., 1973. vol. 4, no. 6. pp. 435-447. doi: 10.1007/bf01215403.
  6. Isham C. J., Salam A., Strathdee J. Spontaneous breakdown of conformal symmetry // Phys. Lett. B, 1970. vol. 31, no. 5. pp. 300-302. doi: 10.1016/0370-2693(70)90177-2.
  7. Isham C. J., Salam A., Strathdee J. f -Dominance of Gravity // Phys. Rev. D, 1971. vol. 3, no. 4. pp. 867-873. doi: 10.1103/physrevd.3.867.
  8. Zumino B. Effective Lagrangians and broken symmetries / Lectures on Elementary Particles and Quantum Field Theory. vol. 2; eds. S. Deser, M. Grisaru, H. Pedleton. Cambridge, MA: MIT Press, 1970. pp. 437-500.
  9. Damour T., Kogan I. I. Effective Lagrangians and universality classes of nonlinear bigravity // Phys. Rev. D, 2002. vol. 66, no. 10, 104024. 17 pp., arXiv: hep-th/0206042. doi: 10.1103/physrevd.66.104024.
  10. de Rham C., Gabadadze G., Tolley A. J. Resummation of Massive Gravity // Phys. Rev. Lett., 2011. vol. 106, no. 23, 231101. 4 pp., arXiv: 1011.1232 [hep-th]. doi: 10.1103/physrevlett.106.231101.
  11. de Rham C., Gabadadze G., Tolley A. J. Ghost free massive gravity in the Stückelberg language // Phys. Lett. B, 2012. vol. 711, no. 2. pp. 190-195, arXiv: 1107.3820 [hep-th]. doi: 10.1016/j.physletb.2012.03.081.
  12. Boulware D. G., Deser S. Can Gravitation Have a Finite Range? // Phys. Rev. D, 1972. vol. 6, no. 12. pp. 3368-3382. doi: 10.1103/physrevd.6.3368.
  13. Hassan S. F., Rosen R. A. Bimetric gravity from ghost-free massive gravity // J. High Energ. Phys. vol. 2012, no. 2, 126, arXiv: 1109.3515 [hep-th]. doi: 10.1007/jhep02(2012)126.
  14. Hassan S. F., Rosen R. A. Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity // J. High Energ. Phys., 2012. vol. 2012, no. 4, 123, arXiv: 1111.2070 [hep-th]. doi: 10.1007/jhep04(2012)123.
  15. Hinterbichler K., Rosen R. A. Interacting spin-2 fields // J. High Energ. Phys., 2012. vol. 2012, no. 7, 047, arXiv: 1203.5783 [hep-th]. doi: 10.1007/jhep07(2012)047.
  16. Alexandrov S., Krasnov K., Speziale S. Chiral description of massive gravity // J. High Energ. Phys., 2013. vol. 2013, no. 6, 068, arXiv: 1212.3614 [hep-th]. doi: 10.1007/JHEP06(2013)068.
  17. Alexandrov S. Canonical structure of tetrad bimetric gravity // Gen. Rel. Grav., 2014. vol. 46, no. 1, 1639, arXiv: 1308.6586 [hep-th]. doi: 10.1007/s10714-013-1639-1.
  18. Kluson J. Hamiltonian formalism of bimetric gravity in vierbein formulation // Eur. Phys. J. C. vol. 74, no. 8, 2985, arXiv: 1307.1974 [hep-th]. doi: 10.1140/epjc/s10052-014-2985-1.
  19. Soloviev V. O. Bigravity in tetrad Hamiltonian formalism and matter couplings, 2014. 25 pp., arXiv: 1410.0048 [hep-th].
  20. Соловьев В. О., Чичикина М. В. Бигравитация в гамильтоновом формализме Кухаржа. Общий случай // ТМФ, 2013. Т. 176, № 3. С. 393-407. doi: 10.4213/tmf8450.
  21. Soloviev V. O., Tchichikina M. V. Bigravity in Kuchar's Hamiltonian formalism. 2. The special case // Phys. Rev. D, 2013. vol. 88, no. 8, 084026, arXiv: 1302.5096 [hep-th]. doi: 10.1103/PhysRevD.88.084026.
  22. Comelli D., Crisostomi M., Nesti F., Pilo L. Degrees of freedom in massive gravity // Phys. Rev. D, 2012. vol. 86, no. 10, 101502(R), arXiv: 1204.1027 [hep-th]. doi: 10.1103/physrevd.86.101502.
  23. Comelli D., Nesti F., Pilo L. Weak massive gravity // Phys. Rev. D, 2013. vol. 87, no. 12, arXiv: 1302.4447 [hep-th]. doi: 10.1103/physrevd.87.124021.
  24. Comelli D., Nesti F., Pilo L. Massive gravity: a general analysis // J. High Energ. Phys., 2013. vol. 2013, no. 7, 161, arXiv: 1305.0236 [hep-th]. doi: 10.1007/jhep07(2013)161.
  25. Arnowitt R., Deser S., Misner Ch. W. The Dynamics of General Relativity, Chapter 7 /Gravitation: an introduction to current research; ed. L. Witten: Wiley, 1962. pp. 227-265
  26. Arnowitt R., Deser S., Misner Ch. W. Republication of: The dynamics of general relativity // Gen. Relativ. Gravit. vol. 40, no. 9. pp. 1997-2027, arXiv: gr-qc/0405109. doi: 10.1007/s10714-008-0661-1.
  27. Kuchař K. Geometry of hyperspace. I // J. Math. Phys., 1976. vol. 17, no. 5. pp. 777-791. doi: 10.1063/1.522976.
  28. Kuchař K. Kinematics of tensor fields in hyperspace. II // J. Math. Phys., 1976. vol. 17, no. 5. pp. 792-800. doi: 10.1063/1.522977.
  29. Kuchař K. Dynamics of tensor fields in hyperspace. III // J. Math. Phys., 1976. vol. 17, no. 5. pp. 801-820. doi: 10.1063/1.522978.
  30. Kuchař K. Geometrodynamics with tensor sources. IV // J. Math. Phys., 1977. vol. 18, no. 8. pp. 1589-1597. doi: 10.1063/1.523467.
  31. Fairlie D., Leznov A. General solutions of the Monge-Ampère equation in n-dimensional space // J. Geom. Phys., 1995. vol. 16, no. 4. pp. 385-390, arXiv: hep-th/9403134. doi: 10.1016/0393-0440(94)00035-3.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».