Scattering of vortices in abelian higgs models on compact riemann surfaces


Cite item

Full Text

Abstract

Abelian Higgs models on Riemann surfaces are natural analogues of the (2 + 1)-dimensional Abelian Higgs model on the plane. The latter model arises in theory of superconductivity. For this model the following result was previously obtained: if two vortices (zeros of the Higgs field) move slowly, then after the head-on collision they scatter under the right angle, and if N vortices collide, then after the symmetric head-on collision they scatter on the angle π/N . In the critical case (when the parameter of the model is equal to 1) these results can be obtained with the help of so-called adiabatic principle. This principle allows to consider geodesics of so-called kinetic metric (metric that is given by kinetic energy functional) on the moduli space of static solutions as approximations to dynamical solutions of the model with small kinetic energy. Recently, the adiabatic principle was rigorously justified in the (2 + 1)-dimensional Abelian Higgs model on the plane in the critical case. Although the metric can not be written in explicit form, one can prove that required geodesics (describing the π/N scattering) exist, using smoothness of the metric in coordinates that are given by symmetric functions on positions of vortices and symmetry properties of the kinetic metric. A local analogue of the result on π/N scattering in (2+1)-dimensional Abelian Higgs model on the plane can be deduced only from smoothness property of the kinetic metric. One can suppose that this local version of the result on π/N scattering can be generalized to Abelian Higgs models on Riemann surfaces. It is proved in this paper that one can find geodesics of the kinetic metric that describe local π/N scattering after the symmetric collision in models on Riemann surfaces, using the fact that the kinetic metric is smooth in symmetric coordinates in the neihbourhood of a point of vortex collision. This smoothness property is established in the case of compact Riemann surfaces. With the help of adiabatic principle one could obtain local π/N scattering after the symmetric collision for dynamical models on compact Riemann surfaces. Unfortunately, the adiabatic principle in models on compact Riemann surfaces needs the proof yet, until now it is only a heuristic statement.

About the authors

Roman V Palvelev

M. V. Lomonosov Moscow State University

Email: palvelev@mi.ras.ru
(Cand. Phys. & Math. Sci.; palvelev@mi.ras.ru), Associate Professor, Dept. of Theory of Functions and Functional Analysis. Vorob'evy gory, Moscow, 119899, Russian Federation

References

  1. Пальвелев Р. В. Рассеяние вихрей в абелевых моделях Хиггса на компактных римановых поверхностях / Четвертая международная конференция «Математическая физика и ее приложения»: материалы конф.; ред. чл.-корр. РАН И. В. Волович; д.ф.-м.н., проф. В. П. Радченко. Самара: СамГТУ, 2014. С. 278-279.
  2. Jaffe A., Taubes C. Vortices and monopoles: structure of static gauge theories / Progress in Physics. vol. 2. Boston, Basel, Stuttgart: Birkhäuser Verlag, 1980. 287 pp.
  3. Manton N. S. A remark on the scattering of BPS monopoles // Phys. Lett. B, 1982. vol. 110, no. 1. pp. 54-56. doi: 10.1016/0370-2693(82)90950-9.
  4. Ruback P. J. Vortex string motion in the Abelian Higgs model // Nucl. Phys. B, 1988. vol. 296, no. 3. pp. 669-678. doi: 10.1016/0550-3213(88)90038-7.
  5. Сергеев А. Г., Чечин С. В. О рассеянии медленно движущихся вихрей в абелевой (2 + 1)-мерной модели Хиггса // ТМФ, 1990. Т. 85, № 3. С. 397-411.
  6. Samols T. M. Vortex scattering // Commun. Math. Phys., 1992. vol. 145, no. 1. pp. 149-179. doi: 10.1007/bf02099284.
  7. Stuart D. Dynamics of Abelian Higgs vortices in the near Bogomolny regime // Commun. Math. Phys., 1994. vol. 159, no. 1. pp. 51-91. doi: 10.1007/bf02100485.
  8. Пальвелев Р. В. Рассеяние вихрей в абелевой модели Хиггса // ТМФ, 2008. Т. 156, № 1. С. 77-91. doi: 10.4213/tmf6231.
  9. Пальвелев Р. В., Сергеев А. Г. Обоснование адиабатического принципа для гиперболических уравнений Гинзбурга-Ландау / Математическая теория управления и дифференциальные уравнения: Сборник статей. К 90-летию со дня рождения академика Евгения Фроловича Мищенко / Тр. МИАН, Т. 277. М.: МАИК, 2012. С. 199-214.
  10. Stuart D. M. A. Periodic solutions of the Abelian Higgs model and rigid rotation of vortices // Geometric And Functional Analysis, 1999. vol. 9, no. 3. pp. 568-595. doi: 10.1007/s000390050096.
  11. Bradlow S. B. Vortices in holomorphic line bundles over closed Kähler manifolds // Commmun. Math. Phys., 1990. vol. 135, no. 1. pp. 1-17. doi: 10.1007/bf02097654.
  12. Kazdan J. L., Warner F. L. Curvature functions for compact 2-manifolds // Ann. Math., 1974. vol. 99, no. 1. pp. 14-47. doi: 10.2307/1971012.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».