On the determination of pure quantum states by the homodyne detection
- Authors: Dnestryan A.I1
-
Affiliations:
- Moscow Institute of Physics and Technology (State University)
- Issue: Vol 20, No 1 (2016)
- Pages: 33-42
- Section: Articles
- URL: https://journal-vniispk.ru/1991-8615/article/view/20465
- DOI: https://doi.org/10.14498/vsgtu1462
- ID: 20465
Cite item
Full Text
Abstract
The methods of reconstruction of the wave function of a pure state of a quantum system by quadrature distribution measured experimentally by the homodyne detection are considered. Such distribution is called optical tomogram of a state and containes one parameter θ. Wave function of a state is determined exactly by its optical tomogram if last one is known for all θ. But one can obtain optical tomogram from experiment of homodyne detection only for discrete number of θ. We introduce some approximate methods of reconstructing the state by such information about its optical tomogram.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Andrey I Dnestryan
Moscow Institute of Physics and Technology (State University)
Email: dnestor@inbox.ru
Postgraduate Student, Dept. of Higher Mathematics 9, Inststitutskii per., Dolgoprudny, Moscow region, 141700, Russian Federation
References
- Vogel K., Risken H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase // Phys. Rev. A, 1989. vol. 40, no. 5. pp. 2847- 2855. doi: 10.1103/physreva.40.2847.
- Smithey D. T., Beck M., Raymer M. G., Faridani A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum // Phys. Rev. Lett., 1993. vol. 70, no. 9. pp. 1244-1247. doi: 10.1103/physrevlett.70.1244.
- Mancini S., Man'ko V. I., Tombesi P. Symplectic tomography as classical approach to quantum systems // Phys. Lett. A, 1996. vol. 213, no. 1-2. pp. 1-6. doi: 10.1016/ 0375-9601(96)00107-7.
- Амосов Г. Г., Днестрян А. И. О спектре семейства интегральных операторов, определяющих квантовую томограмму // Труды МФТИ, 2011. Т. 3, No 1. С. 5-9.
- Schleich W. P. Quantum Optics in Phase Space. Berlin: Verlag, 2001, xx+695 pp. doi: 10. 1002/3527602976.
- Pauli W. Die allgemeinen Prinzipien der Wellenmechanik // Handbuch Physik, 1933. vol. 24, Tl. 1. pp. 83-272; Pauli W. Die allgemeinen Prinzipien der Wellenmechanik / Die allgemeinen Prinzipien der Wellenmechanik / Neu herausgegeben und mit historischen Anmerkungen versehen von Norbert Straumann; ed. Professor Dr. Norbert Straumann. Berlin: Springer, 1990. pp. 21-192. doi: 10.1007/978-3-642-61287-9_2.
- Reichenbach H. Philosophic Foundations of Quantum Mechanics. Berkeley and Los Angeles: University of California Press, 1944. x+182 pp.
- Vogt A. Position and Momentum Distributions do not Determine the Quantum Mechanical State / Mathematical Foundations of Quantum Theory. New York: Academic Press, 1978. pp. 365-372. doi: 10.1016/b978-0-12-473250-6.50024-8.
- Freyberger M., Bardroff P. J., Leichle C., Schrade G., Schleich W. P. The art of measuring quantum states // Physics World, 1997. vol. 10, no. 11. pp. 41-46. doi: 10.1088/2058-7058/ 10/11/31.
- Schleich W. P., Raymer M. G. Special issue on quantum state preparation and measurement // J. Mod. Opt., 1997. no. 11-12. pp. 2021-2022. doi: 10.1080/09500349708231863.
- Leibfried D., Pfau T., Monroe C. Shadows and Mirrors: Reconstructing Quantum States of Atom Motion // Physics Today, 1998. vol. 51, no. 4. pp. 22-28. doi: 10.1063/1.882256.
- Welsch D.-G., Vogel W., Opatrný T. II Homodyne Detection and Quantum-State Reconstruction / Progress in Optics. vol. 39; ed. E. Wolf. Amsterdam: North-Holland, 1999. pp. 63-211. doi: 10.1016/S0079-6638(08)70389-5.
- Radon J. Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten // Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. kl., 1917. vol. 69. pp. 262-277, Available at http://people.csail.mit.edu/bkph/courses/papers/Exact_ Conebeam/Radon_Deutsch_1917.pdf (February 24, 2016); Radon J. Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten / Proceedings of Symposia in Applied Mathematics. vol. 27; ed. Lawrence A. Shepp. Providence: Amer. Math. Soc., 1983, pp. 71-86. doi: 10.1090/psapm/027/692055.
- D'Ariano G. M., Mancini S., Man’ko V. I., Tombesi P. Reconstructing the density operator by using generalized field quadratures // Quantum Semiclass. Opt., 1996. vol. 8, no. 5. pp. 1017-1027. doi: 10.1088/1355-5111/8/5/007.
- Leonhardt U., Paul H., D’Ariano G. M. Tomographic reconstruction of the density matrix via pattern functions // Phys. Rev. A, 1995. vol. 52, no. 6. pp. 4899-4907. doi: 10.1103/ physreva.52.4899.
- Leonhardt U., Munroe M. Number of phases required to determine a quantum state in optical homodyne tomography // Phys. Rev. A, 1996. vol. 54, no. 4. pp. 3682-3684. doi: 10. 1103/physreva.54.3682.
- Orlowski A., Paul H. Phase retrieval in quantum mechanics // Phys. Rev. A, 1994. vol. 50, no. 2. pp. R921-R924. doi: 10.1103/physreva.50.r921.
- Амосов Г. Г., Днестрян А. И. О восстановлении чистого состояния по неполной информации о его оптической томограмме // Изв. вузов. Матем., 2013. No 3. С. 62-67.
Supplementary files

