Fluctuations of a beam with clamped ends
- Authors: Sabitov K.B1
-
Affiliations:
- Samara State University of Architecture and Civil Engineerin
- Issue: Vol 19, No 2 (2015)
- Pages: 311-324
- Section: Articles
- URL: https://journal-vniispk.ru/1991-8615/article/view/20467
- DOI: https://doi.org/10.14498/vsgtu1406
- ID: 20467
Cite item
Full Text
Abstract
In this paper we study the initial problem for the equation of a beam with clamped ends. Uniqueness, existence and stability theorems are proved for the problem in the classes of regular and generalized solutions. Solution of the initial-boundary value problem is constructed in the form of a series in the system of eigenfunctions of one-dimensional spectral problem. We found the spectral problem eigenvalues as roots of the transcendental equation and the corresponding system of eigenfunctions. It is shown that the system of eigenfunctions is orthogonal and complete in L 2. On the basis of the completeness of the eigenfunctions the uniqueness theorem for the initial-boundary value problem for the equation of the beam is obtained. The generalized solution is defined as the limit of a sequence of regular solutions of the mean-square norm on the space variable.
Full Text
##article.viewOnOriginalSite##About the authors
Kamil B Sabitov
Samara State University of Architecture and Civil Engineerin
Email: sabitov_fmf@mail.ru
(Dr. Phys. & Math. Sci.; sabitovfmf@mail.ru), Professor, Dept. of Higher Mathematics 194, Molodogvardeyskaya st., Samara, 443001, Russian Federation
References
- Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1966. 724 с.
- Коренев Б. Г. Вопросы расчета балок и плит на упругом основании. М.: Стройиздат, 1954. 232 с.
- Коллатц Л. Задачи на собственные значения с техническими приложениями. М.: Наука, 1968. 503 с.
- Бидерман В. Л. Теория механических колебаний. М.: Высшая школа, 1980. 408 с.
- Andrianov I., Awrejcewicz J., Danishevs'kyy V., Ivankov A. Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions. United Kingdom: John Wiley & Sons, 2014. doi: 10.1002/9781118725184.
- Сабитов К. Б. Уравнения математической физики. М.: Физматлит, 2013. 352 с.
- Наймарк М. А. Линейные дифференциальные операторы. М.: Наука, 1969. 528 с.
- Натансон И. П. Теория функций вещественной переменной. М.: Наука, 1974. 480 с.
Supplementary files

