On optimal control problem for the heat equation with integral boundary condition


Cite item

Full Text

Abstract

In this paper we consider the optimal control problem for the heat equation with an integral boundary condition. Control functions are the free term and the coefficient of the equation of state and the free term of the integral boundary condition. The coefficients and the constant term of the equation of state are elements of a Lebesgue space and the free term of the integral condition is an element of Sobolev space. The functional goal is the final. The questions of correct setting of optimal control problem in the weak topology of controls space are studied. We prove that in this problem there exist at least one optimal control. The set of optimal controls is weakly compact in the space of controls and any minimizing sequence of controls of a functional of goal converges weakly to the set of optimal controls. There is proved Frechet differentiability of the functional of purpose on the set of admissible controls. The formulas for the differential of the gradient of the purpose functional are obtained. The necessary optimality condition is established in the form of variational inequality.

About the authors

Rafiq K Tagiev

Baku State University

Email: r.tagiyev@list.ru
(Dr. Phys. & Math. Sci.; r.tagiyev@list.ru; Corresponding Author), Professor, Dept. of Optimization and Control 23, Z. Khalilov st., Baku, AZ-1148, Azerbaijan

Vahab M Habibov

Lankaran State University

Email: vahab.hebibov@mail.ru
Senior Lecturer, Dept. of Physics, Mathematics and Computer Science 50, Azi Aslanov prospectus, Lankaran, AZ-4200, Azerbaijan

References

  1. Васильев Ф. П. Методы решения экстремальных задач. Задачи минимизации в функциональных пространствах, регуляризация, аппроксимация. М.: Наука, 1981. 400 с.
  2. Егоров А. И. Оптимальное управление тепловыми и диффузионными процессами. М.: Наука, 1978. 436 с.
  3. Лионс Ж.-Л. Оптимальное управление системами, описываемыми уравнениями с частными производными. М.: Мир, 1972. 416 с.
  4. Искендеров А. Д., Тагиев Р. К. Задачи оптимизации с управлениями в коэффициентах параболического уравнения // Дифференц. уравнения, 1983. Т. 19, № 8. С. 1324-1334.
  5. Тагиев Р. К. Оптимальное управление коэффициентами в параболических системах // Дифференц. уравнения, 2009. Т. 45, № 10. С. 1492-1501.
  6. Тагиев Р. К. Задача оптимального управления для квазилинейного параболического уравнения с управлениями в коэффициентах и с фазовыми ограничениями // Дифференц. уравнения, 2013. Т. 49, № 3. С. 380-392. doi: 10.1134/S0374064113030138.
  7. Ионкин Н. И. Решение одной краевой задачи теории теплопроводности с неклассическим краевым условием // Дифференц. уравнения, 1977. Т. 13, № 2. С. 294-304.
  8. Самарский А. А. О некоторых проблемах теории дифференциальных уравнений // Дифференц. уравнения, 1980. Т. 16, № 11. С. 1925-1935.
  9. Нахушев А. М. Уравнения математической биологии. М.: Высш. шк., 1995. 301 с.
  10. Иванчов Н. И. Краевые задачи для параболического уравнения с интегральными условиями // Дифференц. уравнения, 2004. Т. 40, № 4. С. 547-564.
  11. Кожанов А. И. О разрешимости краевой задачи с нелокальным граничным условием для линейных параболических уравнений // Вестн. Сам. гос. техн. ун-та. Сер. Физ.мат. науки, 2004. № 30. С. 63-69. doi: 10.14498/vsgtu308.
  12. Пулькина Л. С. Нелокальная задача для уравнения теплопроводности / Неклассические уравнения математической физики: Международный семинар, посвященный 60-летию со дня рождения профессора В. Н. Врагова (Новосибирск, 3-5 октября 2005 г.); ред. А. И. Кожанов. Новосибирск: Инс-т мат. СО РАН, 2005. С. 231-239.
  13. Данилкина О. Ю. Об одной нелокальной задаче для уравнения теплопроводности с интегральным условием // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2007. № 1(14). С. 5-9. doi: 10.14498/vsgtu480.
  14. Ладыженская О. А. Краевые задачи математической физики. М.: Наука, 1973. 408 с.
  15. Лионс Ж.-Л. Управление сингулярными распределенными системами. М.: Мир, 1987. 368 с.
  16. Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967. 736 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).