О задачах со смещениями в граничных условиях для гиперболического уравнения


Цитировать

Полный текст

Аннотация

В представленной статье рассмотрены три задачи для гиперболического уравнения в характеристической области на плоскости. В обсуждаемых задачах хотя бы одно из условий Гурса заменено на нелокальное условие на соответствующей характеристике. Нелокальные условия представляют собой линейную комбинацию нормальных производных в точках на противоположных характеристиках. В случае замены одного условия решение осуществляется сведением к задаче Гурса, для которой оно существует и единственно. При этом для нахождения неизвестного условия Гурса автор получает интегральное уравнение, которое переписывает в операторной форме и находит случаи его однозначной разрешимости. Для доказательства однозначной разрешимости упомянутого уравнения автор показывает непрерывность линейного оператора и то, что некоторая его степень является сжимающим отображением. Известно, что в этом случае искомое условие Гурса можно записать в виде ряда Неймана. Подробно рассматривается только одна из поставленных задач, но для обеих сформулированы теоремы об однозначной разрешимости. Если же заменены два условия, единственность решения в предположении, что оно существует, доказывается методом априорных оценок. Для этого используются скалярное произведение и норма в пространстве $L_2$. В результате были получены условия на коэффициенты гиперболического уравнения, которые обеспечивают единственность решения задачи. После этого приведен пример, подтверждающий, что полученные условия являются существенными. А именно, построено уравнение, коэффициенты которого не удовлетворяют условиям последней теоремы, заданы условия на характеристиках и построено ненулевое решение.

Об авторах

Елена Анатольевна Уткина

Казанский (Приволжский) федеральный университет

Email: eutkina1@yandex.ru
(д.ф.-м.н., доц.; eutkina1@yandex.ru), доцент, каф. общей математики Россия, 420008, Казань, ул. Кремлевская, 18

Список литературы

  1. Жегалов В. И. Краевая задача для уравнения смешанного типа с граничными условиями на обеих характеристиках и с разрывами на переходной линии / Краевые задачи теории аналитических функций / Учен. зап. Казан. ун-та., Т. 122. Казань: Изд-во Казанского ун-та, 1962. С. 3-16.
  2. Нахушев А. М. О некоторых краевых задачах для гиперболических уравнений и уравнений смешанного типа // Дифференц. уравнения, 1969. Т. 5, № 1. С. 44-59.
  3. Бицадзе А. В., Самарский А. А. О некоторых простейших обобщениях линейных эллиптических краевых задач // ДАН СССР, 1969. Т. 185, № 4. С. 739-740.
  4. Скубачевский А. Л. О спектре некоторых нелокальных эллиптических краевых задач // Матем. сб., 1982. Т. 117(159), № 4. С. 548-558.
  5. Ильин В. А., Моисеев Е. И. Двумерная нелокальная краевая задача для оператора Пуассона в дифференциальной и разностной трактовках // Матем. моделирование, 1990. Т. 2, № 8. С. 139-156.
  6. Пулькина Л. С. Нелокальная задача для нагруженного гиперболического уравнения / Дифференциальные уравнения и динамические системы: Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко / Тр. МИАН, Т. 236. М.: Наука, 2002. С. 298-303.
  7. Солдатов А. П., Шхануков М. Х. Краевые задачи с общим нелокальным условием А. А. Самарского для псевдопараболических уравнений высокого порядка // ДАН СССР, 1987. Т. 297, № 3. С. 547-552.
  8. Керефов А. А. Нелокальные граничные задачи для параболических уравнений // Дифференц. уравнения, 1979. Т. 15, № 1. С. 74-78.
  9. Уткина Е. А. Об одной задаче со смещениями в граничных условиях // Вестн. СамГУ. Естественнонаучн. сер., 2011. № 8(89). С. 102-107.
  10. Жегалов В. И., Миронов А. Н. Дифференциальные уравнения со старшими частными производными. Казань: Казанское матем. общество, 2001. 226 с.
  11. Кожанов А. И. Нелинейные нагруженные уравнения и обратные задачи // Ж. Вычисл. матем. и матем. физ., 2004. Т. 44, № 4. С. 694-716.
  12. Бицадзе А. В. Некоторые классы уравнений в частных производных. М.: Наука, 1981. 448 с.
  13. Ладыженская О. А. Краевые задачи математической физики. М.: Наука, 1973. 408 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».