The Cauchy problem for a general hyperbolic differential equation of the n-th order with the nonmultiple characteristics


Cite item

Full Text

Abstract

In the paper the problem of Cauchy is considered for the hyperbolic differential equation of the n-th order with the nonmultiple characteristics. The Cauchy problem is considered for the hyperbolic differential equation of the third order with the nonmultiple characteristics for example. The analogue of D'Alembert formula is obtained as a solution of the Cauchy problem for the hyperbolic differential equation of the third order with the nonmultiple characteristics. The regular solution of the Cauchy problem for the hyperbolic differential equation of the forth order with the nonmultiple characteristics is constructed in an explicit form. The regular solution of the Cauchy problem for the $n$-th order hyperbolic differential equation with the nonmultiple characteristics is constructed in an explicit form. The analogue of D'Alembert formula is obtained as a solution of this problem also. The existence and uniqueness theorem for the regular solution of the Cauchy problem for the $n$-th order hyperbolic differential equation with the nonmultiple characteristics is formulated as the result of the research.

About the authors

Aleksandr A Andreev

Samara State Technical University

Email: andre01071948@yandex.ru
(Cand. Phys. & Math. Sci.; andre01071948@yandex.ru), Associate Professor, Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Julia O Yakovleva

Samara National Research University

Email: julia.yakovleva@mail.ru
(Cand. Phys. & Math. Sci.; julia.yakovleva@mail.ru; Corresponding Author), Associate Professor, Dept. of Mathematics & Business Informatics 34, Moskovskoye shosse, Samara, 443086, Russian Federation

References

  1. Holmgren E. Sur les syst`emes lin´eaires aux d´eriv´ees partielles du premier ordre deux variables ind´ependantes `a caract´eristiques r´eelles et distinetes // Arkiv f. Mat., Astr. och Fys., 1909. vol. 5, no. 1. 13 pp. (In Swedish)
  2. Rieman B. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (Aus dem achten Bande der Abhandlungen der K¨oniglichen Gesellschaft der Wissenschaften zu G¨ ottingen. 1860.) / Bernard Riemann’s Gesammelte mathematische Werke und wissenschaftlicher Nachlass; eds. R. Dedekind, H. M. Weber. United States: BiblioLife, 2009. pp. 145-164 (In German). doi: 10.1017/cbo9781139568050.009.
  3. Бицадзе А. В. Уравнения математической физики. М.: Наука, 1982. 336 с.
  4. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1972. 736 с.
  5. Ali Raeisian S. M. Effective Solution of Riemann Problem for Fifth Order Improperly Elliptic Equation on a Rectangle // AJCM, 2012. vol. 2, no. 4. pp. 282-286. doi: 10.4236/ajcm. 2012.24038.
  6. Nikolov A., Popivanov N. Singular solutions to Protter’s problem for (3+1)-D degenerate wave equation (8-13 June 2012; Sozopol, Bulgaria) / AIP Conf. Proc., 1497, 2012. pp. 233-238. doi: 10.1063/1.4766790.
  7. Корзюк В. И., Чеб Е. С., Ле Тхи Тху, Решение смешанной задачи для биволнового уравнения методом характеристик // Тр. Ин-та матем., 2010. Т. 18, № 2. С. 36-54.
  8. Миронов А. Н. О методе Римана решения задачи Коши // Изв. вузов. Матем., 2005. № 2. С. 34-44.
  9. Радкевич Е. В. О корректности задачи Коши и смешанной задачи для некоторого класса гиперболических систем и уравнений с постоянными коэффициентами и переменной кратностью характеристик / Труды Четвертой Международной конференции по дифференциальным и функционально-дифференциальным уравнениям (Москва, 14-21 августа, 2005). Часть 2 / СМФН, Т. 16. М.: РУДН, 2006. С. 110-135.
  10. Яковлева Ю. О. Задача Коши для гиперболического уравнения и системы гиперболических уравнений третьего порядка с некратными характеристиками // Научные ведомости БелГУ. Сер. Математика. Физика , 2013. Т. 31, № 11. С. 109-117.
  11. Андреев А. А., Яковлева Ю. О. Задача Коши для системы уравнений гиперболического типа четвертого порядка общего вида с некратными характеристиками // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки , 2014. № 4(37). С. 7-15. doi: 10.14498/ vsgtu1349.
  12. Петровский И. Г. Избранные труды. Системы уравнений с частными производными. Алгебраическая геометрия. М.: Наука, 1986. 500 с.
  13. Bellman R. Introduction to matrix analysis: 2nd ed., Reprint of the 1970 Orig. / Classics in Applied Mathematics. vol. 19. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1997. xxviii+403 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).