Математическое моделирование напряженно-деформированного состояния размеростабильных композитных элементов конструкций оптических телескопов с помощью метода конечных элементов


Цитировать

Полный текст

Аннотация

Рассмотрены вопросы проектирования размеростабильных композитных элементов конструкций оптических телескопов. Описана этапность проведения проектировочных расчетов. Приведены основные соотношения микромеханики теории композитных материалов. На примере разработанной композитной конструкции корпуса оптико-электронного комплекса с односторонним подкреплением ребрами описаны особенности математического моделирования с учетом принятых допущений. Представлены результаты экспериментального определения характеристик углепластиков, используемые при проектировании размеростабильной несущей конструкции корпуса оптического телескопа, отражены преимущества метода конечных элементов как одного из основных методов решения краевых задач прикладной механики. Показана корректность использования аналитических методов на начальных этапах разработки с целью сокращения сроков проектирования. Определена ведущая роль конечно-элементного моделирования в прогнозировании поведения конструкций на различных этапах эксплуатации. Показаны размеростабильные несущие композитные корпуса, разработанные с учетом описанной последовательности проектирования конструкций. Описанная этапность создания конструкции позволила обрабатывать и систематизировать данные в процессе их разработки и экспериментальной отработки, уточнять параметры модели конструкции при параметрическом анализе.

Об авторах

Владимир Евгеньевич Биткин

ООО «СКТБ Пластик»

Email: gksi@sktb-plastik.ru
первый заместитель генерального директора - генеральный конструктор по СИ. Россия, 446025, Самарская обл., г. Сызрань, Саратовское шоссе, 4

Ольга Геннадьевна Жидкова

ООО «СКТБ Пластик»

Email: opriokr-prg@sktb-plastik.ru
заместитель генерального конструктора по научной работе Россия, 446025, Самарская обл., г. Сызрань, Саратовское шоссе, 4

Александр Владимирович Денисов

ООО «СКТБ Пластик»

Email: opriokr@sktb-plastik.ru
начальник отдела Россия, 446025, Самарская обл., г. Сызрань, Саратовское шоссе, 4

Андрей Викторович Бородавин

ООО «СКТБ Пластик»

Email: opriokr-zn3@sktb-plastik.ru
заместитель начальника отдела Россия, 446025, Самарская обл., г. Сызрань, Саратовское шоссе, 4

Диана Викторовна Митюшкина

ООО «СКТБ Пластик»

Email: opriokr-prg@sktb-plastik.ru
ведущий инженер Россия, 446025, Самарская обл., г. Сызрань, Саратовское шоссе, 4

Александр Вениаминович Родионов

ООО «СКТБ Пластик»

Email: grpl@sktb-plastik.ru
руководитель проектов Россия, 446025, Самарская обл., г. Сызрань, Саратовское шоссе, 4

Александр Сергеевич Нонин

АО РКЦ «Прогресс»

Email: 1104@samspace.ru
заместитель начальника отдела - начальник сектора Россия, 443009, Самара, ул. Земеца, 18

Список литературы

  1. Chung D. D.L. Carbon Fiber Composites. Boston: Butterworth-Heinemann, 1994. x+215 pp. doi: 10.1016/c2009-0-26078-8.
  2. Edie D. D., Diefendorf R. J. Carbon Fiber Manufacturing / Carbon-Carbon Materials and Composites; eds. John D. Buckley, Dan D. Edie. Park Ridge, New Jersey: Noyes Publications, 1993. pp. 19-39. doi: 10.1016/b978-0-8155-1324-7.50007-x.
  3. Fitzer E., Manocha L. M. Carbon Reinforcements and Carbon/Carbon Composites. Berlin: Springer, 1998. xii+344 pp. doi: 10.1007/978-3-642-58745-0.
  4. Sairajan K. K., Nair P. S. Design of low mass dimensionally stable composite base structure for a spacecraft // Composites Part B: Engineering, 2011. vol. 42, no. 2. pp. 280-288. doi: 10.1016/j.compositesb.2010.11.003.
  5. Le Riche R., Gaudin J. Design of dimensionally stable composites by evolutionary optimization // Composite Structures, 1998. vol. 41, no. 2. pp. 97-111. doi: 10.1016/S0263-8223(98)-00009-9.
  6. Молодцов Г. А., Биткин В. Е., Симонов В. Ф., Урмансов Ф. Ф. Формостабильные и интеллектуальные конструкции из композиционных материалов. М.: Машиностроение, 2000. 352 с.
  7. Aydin L., Aydin O., Artem H. S., Mert A. Design of dimensionally stable composites using efficient global optimization method // Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 1464420716664921. doi: 10.1177/1464420716664921.
  8. Datashvili L. Multifunctional and dimensionally stable flexible fibre composites for space applications // Acta Astronautica, 2010. vol. 66, no. 7-8. pp. 1081-1086. doi: 10.1016/j.actaastro.2009.09.026.
  9. Климакова Л. А., Половый А. О., Зельнев В. Н. Формостабильность крупногабаритной углепластиковой антенной платформы КА с конструктивно-жесткостной несимметрией // Механика композиционных материалов и конструкций, 2011. Т. 17, № 2. С. 245-254.
  10. Безмозгий И. М., Софинский А. Н., Чернягин А. Г. Моделирование в задачах вибропрочности конструкций ракетно-космической техники // Космическая техника и технологии, 2014. № 3. С. 71-80.
  11. Биткина Е. В., Денисов А. В., Биткин В. Е. Конструктивно-технологические методы создания размеростабильных космических композитных конструкций интегрального типа // Известия Самарского научного центра Российской академии наук, 2012. Т. 14, № 4(2). С. 555-560.
  12. Биткин В. Е., Денисов А. В., Денисова M. A., Жидкова О. Г., Назаров Е. В., Рогальская О. И., Мелентьев А. В., Мизинова И. А. Апробирование технологического комплекса изготовления силовых и высокоточных размеростабильных элементов конструкций интегрального типа из волокнистых композиционных материалов // Известия Самарского научного центра Российской академии наук, 2014. Т. 16, № 1(5). С. 1320-1327.
  13. MSC Nastran 2016 Quick Reference Guide, 2016, Retrieved September 28, 2016, from https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=DOC10961&actp=LIST.
  14. Васильев В. В., Добряков A. A. , Дудченко A. A. и др. Основы проектирования и изготовления конструкций летательных аппаратов из композиционных материалов. М.: МАИ, 1985. 218 с.
  15. Васильев В. В. Механика конструкций из композиционных материалов. М.: Машиностроение, 1988. 272 с.
  16. Гардымов Г. П., Мешков Е. В., Пчелинцев А. В., Лашманов Г. П., Афанасьев Ю. А. Композиционные материалы в ракетно-космическом аппаратостроении / ред. д-р техн. наук, проф. Г. П. Гардымов, д-р техн. наук, проф. Е. В. Мешков. СПб.: СпецЛит, 1999. 271 с.
  17. Комков М. А., Тарасов В. А. Технология намотки композитных конструкций ракет и средств поражения. М.: МГТУ им. Н. Э. Баумана, 2011. 431 с.
  18. Воробей В. В., Войтков Н. И. Некоторые прикладные задачи механики размеростабильных конструкций из композитов // Механика композитных материалов, 1990. № 2. С. 292-298.
  19. Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The Finite Element Method: Its Basis and Fundamentals. Amsterdam: Elsevier, 2013. 714 pp. doi: 10.1016/B978-1-85617-633-0.00019-8.
  20. Якупов Н. М., Киямов Х. Г., Якупов С. Н., Киямов И. Х. Моделирование элементов конструкций сложной геометрии трехмерными конечными элементами // Механика композиционных материалов и конструкций, 2011. Т. 17, № 1. С. 145-154.
  21. Аронов А. М., Данилов В. А., Никифоров В. О., Савицкий А. М., Сокольский М. Н. Оптико-электронные системы для дистанционного зондирования Земли: Слайды к докладу (23 января 2007 г., Санкт-Петербург), 2007, http://lomo-tech.ru/photos/lomo_kosm_otkr.pdf.
  22. Шимкович Д. Г. Расчет конструкций в MSC/NASTRAN for Windows. М.: ДМК Пресс, 2003. 448 с.
  23. Чигарев А. В., Кравчук А. С., Смалюк А. Ф. ANSYS для инженеров. М.: Машиностроение, 2004. 510 с.
  24. Иванов С. Е. Интеллектуальные программные комплексы для технической и технологической подготовки производства: Часть 5. Системы инженерного расчета и анализа деталей и сборочных единиц / ред. Д. Д. Куликов. СПб.: СПбГУ, ИТМО, 2011. 48 с.
  25. Басов К. А. ANSYS: справочник пользователя. М.: ДМК Пресс, 2005. 640 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».