Refined model of elastic-plastic behavior of longitudinally reinforced curved wall-beam under dynamic loading


Cite item

Full Text

Abstract

An initial-boundary value problem is formulated to describe the dynamic behavior of flexible longitudinally reinforced wall-beams of the lesser curvature. Mechanical behavior of materials of composition of the beams is described by the equations of the theory of plasticity with isotropic hardening. The geometric nonlinearity of the problem is considered in the Karman approximation. The obtained equations and correlations allow with different degree of accuracy to determine the stress-strain state of the considered beams taking into account of their weakened resistance to the transverse shears. From the received relationships in the first approximation the equations, corresponding to the second variant of Timoshenko theory, are obtained. For the numerical integration of the problems the method of steps in time with the involvement of the central differences to approximate derivatives with respect to time, is used. The longitudinally reinforced straight and slightly curved beams-walls of relatively low height are considered. The dynamic response is investigated for the considered constructions depending on the action surface (concave or convex) of external pressure caused by the arrival of the air blast wave. It is found that at the time intervals exceeding a few tenths of fractions of a second, elastic-plastic behavior of flexible reinforced straight and curved wall-beams, determined according to the second variant of the Timoshenko theory, is significantly different from the inelastic dynamic response calculated according to the refined theory.

About the authors

Andrei P Yankovskii

Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences

Email: lab4nemir@rambler.ru
Dr. Phys. & Math. Sci.; Leading Research Scientist; Lab. of Fast Processes Physics 4/1, Institutskaya st., Novosibirsk, 630090, Russian Federation

References

  1. Bannister M. Challenges for composites into the next millennium - a reinforcement perspective // Composites Part A: Applied Science and Manufacturing, 2001. vol. 32, no. 7. pp. 901-910. doi: 10.1016/S1359-835X(01)00008-2.
  2. Pajapakse Y. D. S., Hui D. Marine Composites: Foreword // Composites Part B: Engineering, 2004. vol. 35, no. 6-8. pp. 447-450. doi: 10.1016/j.compositesb.2004.05.001.
  3. Mouritz A. P., Gellert E., Burchill P., Challis K. Review of advanced composite structures for naval ships and submarines // Composite Structures, 2001. vol. 53, no. 1. pp. 21-42. doi: 10. 1016/s0263-8223(00)00175-6.
  4. Полимерные композиционные материалы: структура, свойства, технология / ред. А. А. Берлин. СПб.: Профессия, 2009. 560 с.
  5. Карпов В. В. Модели и алгоритмы исследования прочности и устойчивости подкрепленных оболочек вращения. Часть 1 / Прочность и устойчивость подкрепленных оболочек вращения. В 2-х ч. М.: Физматлит, 2010. 288 с.
  6. Баженов В. А., Кривенко О. П., Соловей Н. А. Нелинейное деформирование и устойчивость упругих оболочек неоднородной структуры: Модели, методы, алгоритмы, малоизученные и новые задачи. М.: Книжный дом "Либроком", 2012. 336 с.
  7. Немировский Ю. В., Мищенко А. В., Вохмянин И. Т. Рациональное и оптимальное проектирование слоистых стержневых систем. Новосибирск: НГАСУ, 2004. 488 с.
  8. Roohollah Mousavi S., Reza Esfahani M. Effective moment of inertia prediction of FRP-reinforced concrete beams based on experimental results // Journal of Composites for Construction, 2012. vol. 16, no. 5. pp. 490-498. doi: 10.1061/(asce)cc.1943-5614.0000284.
  9. Pavłovski D., Szumigaia M. Theoretical and Numerical Study of the Flexural Behaviour of BFRP RC Beams // Engineering Transactions, 2016. vol. 64, no. 2. pp. 213-223.
  10. Hong S. Effects of the Amount and Shape of Carbon Fiber-Reinforced Polymer Strengthening Elements on the Ductile Behavior of Reinforced Concrete Beams // Mechanics of Composite Materials, 2014. vol. 50, no. 4. pp. 427-436. doi: 10.1007/s11029-014-9429-8.
  11. Абросимов Н. А., Елесин А. В. Обоснование применимости макронеоднородных моделей в задачах динамики многослойных композитных балок / Прикладные проблемы прочности и пластичности: Всесоюз. межвуз. сб. Горький: Горьк. ун-т, 1987. С. 69-74.
  12. Абросимов Н. А., Баженов В. Г. Нелинейные задачи динамики композитных конструкций. Н. Новгород: ННГУ, 2002. 400 с.
  13. Янковский А. П. Моделирование упругопластической динамики продольно-армированных балок-стенок на основе явного по времени метода центральных разностей // Прикладная математика и механика, 2017. Т. 81, № 1. С. 54-77.
  14. Романова Т. П., Янковский А. П. Сравнительный анализ моделей изгибного деформирования армированных балок-стенок из нелинейно-упругих материалов // Проблемы прочности и пластичности, 2014. Т. 76, № 4. С. 297-309.
  15. Немировский Ю. В., Янковский А. П. Интегрирование задачи динамического упругопластического изгиба армированных стержней переменного поперечного сечения обобщенными методами Рунге-Кутты // Вычислительные технологии, 2004. Т. 9, № 4. С. 77-95.
  16. Янковский А. П. Исследование упругопластического деформирования армированных балок-стенок с учетом ослабленного сопротивления поперечному сдвигу // Проблемы прочности и пластичности, 2012. Т. 74. С. 92-103.
  17. Зубчанинов В. Г. Основы теории упругости и пластичности. М.: Высш. школа, 1990. 368 с.
  18. Амбарцумян С. А. Общая теория анизотропных оболочек. М.: Наука, 1974. 446 с.
  19. Houlston R., DesRochers C. G. Nonlinear structural response of ship panels subjected to air blast loading // Computers & Structures, 1987. vol. 26, no. 1-2. pp. 1-15. doi: 10.1016/ 0045-7949(87)90232-x.
  20. Динамический расчет сооружений на специальные воздействия: Справочник проектировщика / ред. Б. Г. Коренев, И. М. Рабинович. М.: Стройиздат, 1981. 215 с.
  21. Librescu L., Oh S.-Y., Hohe J. Linear and non-linear dynamic response of sandwich panels to blast loading // Composites Part B: Engineering, 2004. vol. 35, no. 6-8. pp. 673-683. doi: 10.1016/j.compositesb.2003.07.003.
  22. Richtmyer R. D., Morton K. W. Difference methods for initial-value problems. New York: Interscience Publ., 1967. xiv+405 pp.
  23. Самарский А. А. Теория разностных схем. М.: Наука, 1989. 616 с.
  24. Малинин Н. Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1968. 400 с.
  25. Композиционные материалы: Справочник / ред. Д. М. Карпинос. Киев: Наук. думка, 1985. 592 с.
  26. Lubin G. Handbook of composites. New York: Springer US, 1982. xi+786 pp. doi: 10.1007/978-1-4615-7139-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».