Numerical method of estimation of parameters of the nonlinear differential operator of the second order


Cite item

Full Text

Abstract

The main problem of mathematical simulation is the problem of nonlinear estimation of parameters of the different physical systems. The article contains new numerical method of parameters estimation of the nonlinear differential operator of the second order with the dissipative force, proportional to n-motion speed level assessment. Mean square estimation of coefficients of the generalized regression model constructed taking into account the difference equations describing results of measurements of a pulse response of system is the cornerstone of the numerical method. Two landmark procedure of differentiated estimation of parameters of dynamic process realized in a method allow to provide high adequacy of the constructed model to data of an experiment. Application of the developed numerical method allows to increase significantly (several times) the accuracy of estimates of parameters of the nonlinear differential operator in comparison with the known methods due to elimination of the offset in estimates caused by use of approximation in case of simulation of an envelope of vibration amplitudes.

About the authors

Vladimir E Zoteev

Samara State Technical University

Email: zoteev-ve@mail.ru
Dr. Tech. Sci.; Professor; Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Ekaterina D Stukalova

Samara State Technical University

Email: stukalova.ed@samgtu.ru
Graduate Student; Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Elena V Baskinova

Samara State Technical University

Email: bashkinova-ev@yandex.ru
Cand. Phys. & Math. Sci., Associate Professor; Associate Professor; Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Божко А. Е., Голуб Н. М. Динамико-энергетические связи колебательных систем. Киев: Наук. думка, 1980. 188 с.
  2. Пановко А. Г. Основы прикладной теории колебаний и удара. Л.: Машиностроение, 1976. 320 с.
  3. Пановко Я. Г. Внутреннее трение при колебаниях упругих систем. М.: Физматгиз, 1960. 194 с.
  4. Писаренко Г. С., Яковлев А. П., Матвеев В. В. Вибропоглощающие свойства конструкционных материалов: Справочник. Киев: Наук. думка, 1971. 376 с.
  5. Марков С. И., Минаев В. М., Артамонов Б. И. Идентификация колебательных систем автоматического регулирования / Библиотека по автоматике. Выпуск 543. Л.: Энергия, 1975. 96 с.
  6. Штейнберг Ш. Е. Идентификация в системах управления / Библиотека по автоматике. Выпуск 668. М.: Энергоатомиздат, 1987. 80 с.
  7. Зотеев В. Е. Параметрическая идентификация диссипативных механических систем на основе разностных уравнений. М.: Машиностроение, 2009. 344 с.
  8. Bendat J., Piersol A. Engineering Application of Correlation and Spectral Analysis. New York: Wiley-Interscience, 1980. xiv+302 pp.
  9. Явленский К. Н., Явленский А. К. Вибродиагностика и прогнозирование качества механических систем. Л.: Машиностроение, 1983. 239 с.
  10. Вибрации в технике: Справочник. В 6 т. М.: Машиностроение; Т. 1, 1978. 352 с.; Т. 2, 1979. 351 с.; Т. 5, 1981. 496 с.
  11. Jenkins G. M., Watts D. G. Spectral analysis and its applications / Holden-Day series in time series analysis. San Francisco: Holden-Day, 1968. xviii+525 pp.
  12. Добрынин С. А., Фельдман М. С., Фирсов Г. И. Методы автоматизированного исследования вибраций машин: Справочник. М.: Машиностроение, 1987. 224 с.
  13. Marple S. Lawrence, Jr. Digital Spectral Analysis: With Applications / Prentice-Hall Series in Signal Processing. New York: Prentice-Hall, 1987. xx+492 pp.
  14. Деч Г. Руководство к практическому применению преобразования Лапласа и z-преобразования. М.: Наука, 1971. 288 с.
  15. Nayfeh A. H. Introduction to perturbation techniques. New York: John Wiley & Sons, 1993. xiv+519 pp.
  16. Писаренко Г. С., Матвеев В. А., Яковлев А. П. Методы определения характеристик колебаний упругих систем. Киев: Наук. думка, 1976. 88 с.
  17. Draper N. R., Smith H. Applied Regression Analysis / Wiley Series in Probability and Statistics. New York: John Wiley & Sons, 1998. xix+716. doi: 10.1002/9781118625590
  18. Демиденко Е. З. Линейная и нелинейная регрессии. М.: Финансы и статистика, 1981. 302 с.
  19. Marquardt D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters // J. Soc. Indust. Appl. Math., 1963. vol. 11, no. 2. pp. 431-441. doi: 10.1137/0111030.
  20. Hartley H. O., Booker A. Nonlinear Least Squares Estimation // Ann. Math. Statist, 1965. vol. 36, no. 2. pp. 638-650. doi: 10.1214/aoms/1177700171.
  21. Зотеев В. Е. Построение разностных уравнений для повышения точности параметрической идентификации колебательных систем со слабой нелинейностью общего вида // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2000. № 9. С. 169-173. doi: 10.14498/vsgtu44.
  22. Зотеев В. Е. Разработка и исследование линейных дискретных моделей колебаний диссипативных систем // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 1999. № 7. С. 170-177. doi: 10.14498/vsgtu222.
  23. Зотеев В. Е. Параметрическая идентификация линейной динамической системы на основе стохастических разностных уравнений // Матем. моделирование, 2008. Т. 20, № 9. С. 120-128.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».