Mathematical modelling of tissue formation on the basis of ordinary differential equations
- Authors: Nazarov M.N1
 - 
							Affiliations: 
							
- National Research University of Electronic Technology
 
 - Issue: Vol 21, No 3 (2017)
 - Pages: 581-594
 - Section: Articles
 - URL: https://journal-vniispk.ru/1991-8615/article/view/20562
 - DOI: https://doi.org/10.14498/vsgtu1535
 - ID: 20562
 
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Maxim N Nazarov
National Research University of Electronic Technology
														Email: nazarov-maximilian@yandex.ru
				                					                																			                								Senior Lecturer; Dept. of Higher Mathematics-1				                								1, Shokin square, Zelenograd, Moscow, 124498, Russian Federation						
References
- Urdy S. Principles of morphogenesis: the contribution of cellular automata models (Book Review) // Acta Zoologica, 2009. vol. 90, no. 2. pp. 205-208. doi: 10.1111/j.1463-6395.2008.00333.x.
 - Palsson E. A three-dimensional model of cell movement in multicellular systems // Future Generation Computer Systems, 2001. vol. 17, no. 7. pp. 835-852. doi: 10.1016/S0167-739X(00)00062-5.
 - Drasdo D., Höhme S. A single-cell-based model of tumor growth in vitro: monolayers and spheroids // Physical Biology, 2005. vol. 2, no. 3. pp. 133-147. doi: 10.1088/1478-3975/2/3/001.
 - Drasdo D. Center-based Single-cell Models: An Approach to Multi-cellular Organization Based on a Conceptual Analogy to Colloidal Particles / Single-Cell-Based Models in Biology and Medicine / Mathematics and Biosciences in Interaction. Basel: Birkhäuser, 2007. pp. 171-196. doi: 10.1007/978-3-7643-8123-3_8.
 - Bauer A. L., Jackson T. L., Jiang Y. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis // Biophysical Journal, 2007. vol. 92, no. 9. pp. 3105-3121. doi: 10.1529/biophysj.106.101501.
 - Hirashima T., Iwasa Y., Morishita Y. Dynamic modeling of branching morphogenesis of ureteric bud in early kidney development // Journal of Theoretical Biology, 2009. vol. 259, no. 1. pp. 58-66. doi: 10.1016/j.jtbi.2009.03.017.
 - Szabó A., Czirók A. The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts // Math. Model. Nat. Phenom., 2010. vol. 5, no. 1. pp. 106-122. doi: 10.1051/mmnp/20105105.
 - Taber L. A. Towards a unified theory for morphomechanics // Philos. Trans. Ser. A, 2009. vol. 367, no. 1902. pp. 3555-3583. doi: 10.1098/rsta.2009.0100.
 - Wyczalkowski M. A., Chen Z., Filas B. A., Varner V. D., Taber L. A. Computational models for mechanics of morphogenesis // Birth Defects Res. C, 2012. vol. 96, no. 2. pp. 132-152. doi: 10.1002/bdrc.21013.
 - Forgacs G., Foty R. A., Shafrir Y., Steinberg M. S. Viscoelastic properties of living embryonic tissues: a quantitative study // Biophysical Journal, 1998. vol. 74, no. 5. pp. 2227-2234. doi: 10.1016/S0006-3495(98)77932-9.
 - Ranft J., Basan M., Elgeti J., Joanny J.-F., Prost J., Jülicher F. Fluidization of tissues by cell division and apoptosis // Proc. Natl. Acad. Sci. USA, 2010. vol. 107, no. 49. pp. 20863-20868. doi: 10.1073/pnas.1011086107.
 - Dillon R., Othmer H. G. A Mathematical Model for Outgrowth and Spatial Patterning of the Vertebrate Limb Bud // Journal of Theoretical Biology, 1999. vol. 197, no. 3. pp. 295-330. doi: 10.1006/jtbi.1998.0876.
 - Keller E. F., Segel L. A. Initiation of slime mold aggregation viewed as an instability // Journal of Theoretical Biology, 1970. vol. 26, no. 3. pp. 399-415. doi: 10.1016/0022-5193(70)90092-5.
 - Tanaka S. Simulation Frameworks for Morphogenetic Problems // Computation, 2015. vol. 3, no. 2. pp. 197-221. doi: 10.3390/computation3020197.
 - Brauer F., Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology / Texts in Applied Mathematics. vol. 40. New York: Springer Verlag, 2012. xxiv+508 pp. doi: 10.1007/978-1-4614-1686-9.
 - Назаров М. Н. Моделирование роста ткани с учётом возможности внешнего воздействия на её форму // ПДМ, 2013. № 4(22). С. 103-113.
 - Назаров М. Н. Базовая математическая модель для описания процессов регуляции биосинтеза белков // Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2016. Т. 26, № 4. С. 515-524. doi: 10.20537/vm160406.
 - Finch-Edmondson M., Sudol M. Framework to function: mechanosensitive regulators of gene transcription // Cellular and Molecular Biology Letters, 2016. vol. 21, 28. 23 pp. doi: 10.1186/s11658-016-0028-7.
 
Supplementary files
				
			
					
						
				
