Modeling of phase transformations and superelastic hardening of unstable materials
- Authors: Ilyina E.A1, Saraev L.A1
-
Affiliations:
- Samara National Research University
- Issue: Vol 22, No 3 (2018)
- Pages: 407-429
- Section: Articles
- URL: https://journal-vniispk.ru/1991-8615/article/view/20591
- DOI: https://doi.org/10.14498/vsgtu1626
- ID: 20591
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Elena A Ilyina
Samara National Research University
Email: elenaalex.ilyina@yandex.ru
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Mathematics and Business Informatics 34, Moskovskoye shosse, Samara, 443086, Russian Federation
Leonid A Saraev
Samara National Research University
Email: saraev_leo@mail.ru
Dr. Phys. & Math. Sci., Professor; Head of Dept.; Dept. of Mathematics and Business Informatics 34, Moskovskoye shosse, Samara, 443086, Russian Federation
References
- Исупова И. Л., Трусов П. В. Математическое моделирование фазовых превращений в сталях при термомеханической нагрузке // Вестник ПНИПУ. Механика, 2013. № 3. С. 126-156.
- Мишустин И. В., Мовчан А. А. Моделирование фазовых и структурных превращений в сплавах с памятью формы, происходящих под действием немонотонно меняющихся напряжений // Изв. РАН. МТТ, 2014. № 1. С. 37-53.
- Мишустин И. В., Мовчан А. А. Аналог теории пластического течения для описания деформации мартенситной неупругости в сплавах с памятью формы // Изв. РАН. МТТ, 2015. № 2. С. 78-95.
- Казарина С. А., Мовчан А. А., Сильченко А. Л. Экспериментальное исследование взаимодействия фазовых и структурных деформаций в сплавах с памятью формы // Механика композиционных материалов и конструкций, 2016. Т. 22, № 1. С. 85-98.
- Мовчан А. А., Сильченко А. Л. Казарина С. А. Экспериментальное исследование и теоретическое моделирование эффекта перекрестного упрочнения сплавов с памятью формы // Деформация и разрушение материалов, 2017. № 3. С. 20-27.
- Трусов П. В., Волегов П. С., Исупова И. Л., Кондратьев Н. С., Макаревич Е. С., Няшина Н. Д., Останина Т. В., Шарифуллина Э. Р. Многоуровневая модель для описания твердотельных фазовых превращений в многокомпонентных сплавах // Вестник Пермского научного центра УРО РАН, 2016. № 4. С. 83-90.
- Тихомирова К. А. Изотермическое деформирование сплава с памятью формы в разных температурных интервалах. Случай одноосного растяжения // Механика композиционных материалов и конструкций, 2017. Т. 23, № 2. С. 263-282.
- Тихомирова К. А. Феноменологическое моделирование фазовых и структурных деформаций в сплавах с памятью формы. Одномерный случай // Вычислительная механика сплошных сред, 2018. Т. 11, № 1. С. 36-50. doi: 10.7242/1999-6691/2018.11.1.4.
- Тихомирова К. А. Экспериментальное и теоретическое исследование взаимосвязи фазовой и структурной деформаций в сплавах с памятью формы // Вестник ПНИПУ. Механика, 2018. № 1. С. 40-57. doi: 10.15593/perm.mech/2018.1.04.
- Mutter D., Nielaba P. Simulation of the shape memory effect in a NiTi nano model system // J. All. Compounds, 2013. vol. 577. pp. S83-S87, arXiv: 1202.1078 [cond-mat.mtrl-sci]. doi: 10.1016/j.jallcom.2012.01.095.
- Auricchio F., Bonetti E., Scalet G., Ubertini F. Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation // Int. J. Plasticity, 2014. vol. 59. pp. 30-54. doi: 10.1016/j.ijplas.2014.03.008.
- Yu C., Kang G., Kan Q. Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation // Int. J. Plasticity, 2014. vol. 54. pp. 132-162. doi: 10.1016/j.ijplas.2013.08.012.
- Elibol C., Wagner M. F.-X. Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear // Mat. Sci. Eng. A, 2015. vol. 621. pp. 76-81. doi: 10.1016/j.msea.2014.10.054.
- Lobo P. S., Almeida J., Guerreiro L. Shape memory alloys behaviour: A review // Procedia Engineering, 2015. vol. 114. pp. 776-783. doi: 10.1016/j.proeng.2015.08.025.
- Yoo Y.-I., Kim Y.-J., Shin D.-K., Lee J.-J. Development of martensite transformation kinetics of NiTi shape memory alloys under compression // Int. J. Sol. Struct., 2015. vol. 64-65. pp. 51-61. doi: 10.1016/j.ijsolstr.2015.03.013.
- Cisse C., Zaki W., Zineb T. B. A review of constitutive models and modeling techniques for shape memory alloys // Int. J. Plasticity, 2016. vol. 76. pp. 244-284. doi: 10.1016/j.ijplas.2015.08.006.
- Fabrizio M., Pecoraro M., Tibullo V. A shape memory alloy model by a second order phase transition // Mech. Res. Com., 2016. vol. 74. pp. 20-26. doi: 10.1016/j.mechrescom.2016.03.005.
- Сараев Л. А. Математическое моделирование упругопластических свойств многокомпонентных композиционных материалов. Самара: СНЦ РАН, 2017. 222 с.
- Ильина Е. А., Сараев Л. А. Влияние кинетики фазовых превращений на сверхупругое упрочнение нестабильного материала // Современные материалы, техника и технологии, 2017. № 7(15). С. 28-38.
- Christensen R. M. Mechanics of composite materials. New York: Wiley & Sons Inc., 1979. xiv+348 pp.
- Шермергор Т. Д. Теория упругости микронеоднородных сред. М.: Наука, 1979. 399 с.
- Сараев А. Л., Сараев Л. А. Макроскопические модули упругости многокомпонентных композитов с изменяемой микроструктурой // Математика, экономика и управление, 2015. Т. 1, № 3. С. 35-40.
- Steurer W. Crystal Structures of Metallic Elements and Compounds / Physical Metallurgy. vol. 1; eds. David E. Laughlin, Kazuhiro Hono. Elsevier Inc., 2014. pp. 1-101. doi: 10.1016/B978-0-444-53770-6.00001-0.
- Murakami Y. Lattice softening, phase stability and elastic anomaly of the
- Nakanishi N., Mori T., Miura S., Murakami Y., Kachi S. Pseudoelasticity in Au-Cd thermoelastic martensite // Philosophical Magazine, 1973. vol. 28, no. 2. pp. 277-282. doi: 10.1080/14786437308217452.
Supplementary files
