The limit diagram under hot sheet metal forming. A review of constitutive models of material, viscous failure criteria and standard tests
- Authors: Keller I.E1,2, Petukhov D.S1,2, Kazantsev A.V1, Trofimov V.N1
-
Affiliations:
- Perm National Research Polytechnic University
- Institute of Continuous Media Mechanics UB RAS
- Issue: Vol 22, No 3 (2018)
- Pages: 447-486
- Section: Articles
- URL: https://journal-vniispk.ru/1991-8615/article/view/20595
- DOI: https://doi.org/10.14498/vsgtu1608
- ID: 20595
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Ilya E Keller
Perm National Research Polytechnic University; Institute of Continuous Media Mechanics UB RAS
Email: kie@icmm.ru
Dr. Phys. & Math. Sci.; Associate Professor; Professor, Dept. of Dynamics and Strength of Machines; Researcher, Lab. of Nonlinear Mechanics of Deformable Solids 29, Komsomolsky prospekt, Perm, 614990, Russian Federation; 1, Academician Korolev Street, Perm, 614013, Russian Federation
Dmitriy S Petukhov
Perm National Research Polytechnic University; Institute of Continuous Media Mechanics UB RAS
Email: petuhovds@mail.ru
Assistant, Dept. of Dynamics and Strength of Machines; Postgraduate Student, Lab. of Nonlinear Mechanics of Deformable Solids 29, Komsomolsky prospekt, Perm, 614990, Russian Federation; 1, Academician Korolev Street, Perm, 614013, Russian Federation
Aleksandr V Kazantsev
Perm National Research Polytechnic University
Email: alexkazancev@bk.ru
Assistant; Dept. of Dynamics and Strength of Machines 29, Komsomolsky prospekt, Perm, 614990, Russian Federation
Victor N Trofimov
Perm National Research Polytechnic University
Email: tvn_perm@mail.ru
Dr. Techn. Sci.; Associate Professor; Professor; Dept. of Dynamics and Strength of Machines 29, Komsomolsky prospekt, Perm, 614990, Russian Federation
References
- Defects in thermo-mechanical processing / Thermo-Mechanical Processing of Metallic Materials / Pergamon Materials Series, 11; eds. B. Verlinden, J. Driver, I. Samajdar, R. D. Doherty. Pergamon, 2007. pp. 333-348. doi: 10.1016/S1470-1804(07)80016-2.
- Marciniak Z., Duncan J. L., Hu S. J. Mechanics of Sheet Metal Forming. London: Butterworth Heinemann, 2002. xii+211 pp. doi: 10.1016/b978-0-7506-5300-8.x5000-6.
- Silva M. B., Isik K., Tekkaya A. E., Martins P. A. F. Fracture Loci in Sheet Metal Forming: A Review // Acta Metall. Sin. (Engl. Lett.), 2015. vol. 28, no. 12. pp. 1415-1425. doi: 10.1007/s40195-015-0341-6.
- Ильюшин A. A. Деформация вязкопластического тела // Ученые записки МГУ. Механика, 1940. № 39. С. 3-81.
- Marciniak Z., Kuczyński K. Limit strains in the processes of stretch-forming sheet metal // Int. J. Mech. Sci., 1967. vol. 9, no. 9. pp. 609-620. doi: 10.1016/0020-7403(67)90066-5.
- ISO 12004-2:2008. Metallic materials - Sheet and strip - Determination of forming-limit curves - Part 2 : Determination of forming-limit curves in the laboratory. International Organization for Standardization, 2008. 27 pp. doi: 10.3403/BSENISO12004.
- ASTM E2218-15. Standard Test Method for Determining Forming Limit Curves. West Conshohocken, PA, USA: ASTM International, 2015. 16 pp. doi: 10.1520/E2218-15.
- Богатов А. А., Мижирицкий О. И., Смирнов С. В. Ресурс пластичности металлов при обработке давлением. М.: Металлургия, 1984. 144 с.
- Смирнов С. В., Швейкин В. П. Пластичность и деформируемость углеродистых сталей при обработке давлением. Екатеринбург: УрО РАН, 2009. 250 с.
- Калпин Ю. Г., Перфилов В. И., Петров П. А., Рябов В. А., Филиппов Ю. К. Сопротивление деформации и пластичность при обработке металлов давлением. М.: Машиностроение, 2011. 244 с.
- Kim J.B., Yang D.Y. Prediction of wrinkling initiation in sheet metal forming processes // Engineering Computations, 2003. vol. 20, no. 1. pp. 6-39. doi: 10.1108/02644400310458810.
- Freudenthal A. M. The Inelastic Behavior of Engineering Materials and Structures. New York: John Wiley & Sons, 1950.
- Clift S. E., Hartley P., Sturgess C. E. N., Rowe G. W. Fracture prediction in plastic deformation processes // Int. J. Mech. Sci., 1990. vol. 32, no. 1. pp. 1-17. doi: 10.1016/0020-7403(90)90148-C.
- Cockcroft M. G., Latham D. J. Ductility and the workability of metals // J. Inst. Metals, 1968. vol. 96. pp. 33-39.
- Oh S. I., Chen C. C., Kobayashi S. Ductile fracture in axisymmetric extrusion and drawing. Part 2. Workability in extrusion and drawing // J. Eng. Ind., 1979. vol. 101, no. 1. pp. 36-44. doi: 10.1115/1.3439471.
- McClintock F. A. A Criterion for Ductile Fracture by the Growth of Holes // J. Appl. Mech., 1968. vol. 35, no. 2. pp. 363-371. doi: 10.1115/1.3601204.
- Rice J. R., Tracey D. M. On the ductile enlargement of voids in triaxial stress fields // J. Mech. Phys. Solids, 1969. vol. 17, no. 3. pp. 201-217. doi: 10.1016/0022-5096(69)90033-7.
- Johnson R., Cook W. H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures // Eng. Fract. Mech., 1985. vol. 21, no. 1. pp. 31-48. doi: 10.1016/0013-7944(85)90052-9.
- Wierzbicki T., Bao Y., Lee Y.W., Bai Y. Calibration and evaluation of seven fracture models // Int. J. Mech. Sci., 2005. vol. 47, no. 4. pp. 719-743. doi: 10.1016/j.ijmecsci.2005.03.003.
- Bao Y., Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space // Int. J. Mech. Sci., 2004. vol. 46, no. 1. pp. 81-98. doi: 10.1016/j.ijmecsci.2004.02.006.
- Wilkins M. L., Streit R. D., Reaugh J. E. Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests: Technical Report UCRL-53058. Lawrence Livermore National Laboratory, October 3, 1980, Available at https://www.osti.gov/servlets/purl/6628920-KUgBmG/ (July 11, 2018).
- Yang X., Lang L., Liu K., Guo C. Modified MK model combined with ductile fracture criterion and its application in warm hydroforming // Trans. Nonferrous Met. Soc. China, 2015. vol. 25, no. 10. pp. 3389-3398. doi: 10.1016/S1003-6326(15)63974-7.
- Takuda H., Mori K., Hatta N. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals // J. Mat. Proc. Tech., 1999. vol. 95, no. 1-3. pp. 116-121. doi: 10.1016/s0924-0136(99)00275-7.
- Oyane M., Sato T., Okimoto K., Shima S. Criteria for Ductile Fracture and Their Applications // Journal of Mechanical Working Technology, 1980. vol. 4, no. 1. pp. 65-81. doi: 10.1016/0378-3804(80)90006-6.
- Ko Y.K., Lee J.S., Huh H. et al. Prediction of fracture in hubhole expanding process using a new ductile fracture criterion // J. Mat. Proc. Tech., 2007. vol. 187. pp. 358-362. doi: 10.1016/j.jmatprotec.2006.11.071.
- Lou Y., Huh H., Lim S., Pack K. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals // Int. J. Sol. Struct., 2012. vol. 49, pp. 3605-3615. doi: 10.1016/j.ijsolstr.2012.02.016.
- Ghosh A. K. A criterion for ductile fracture in sheets under biaxial loading // Metall. Trans. A, 1976. vol. 7, no. 4. pp. 523-533. doi: 10.1007/BF02643968.
- Norris (Jr.) D. M., Reaugh J. E., Moran B., Quinones D. F. A Plastic-Strain, Mean-Stress Criterion for Ductile Fracture // J. Eng. Mater. Technol., 1978. vol. 100, no. 3. pp. 279-286. doi: 10.1115/1.3443491.
- Atkins A. G. Possible explanation for unexpected departures in hydrostatic tension-fracture strain relations // Metal Science, 1981. vol. 15, no. 2. pp. 81-83. doi: 10.1179/msc.1981.15.2.81.
- Weck A., Wilkinson D. S. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes // Acta Materialia, 2008. vol. 56, no. 8. pp. 1774-1784. doi: 10.1016/j.actamat.2007.12.035.
- Li H., Fu M. W., Lu J., Yang H. Ductile fracture: Experiments and computations // Int. J. Plast., 2011. vol. 27, no. 2. pp. 147-180. doi: 10.1016/j.ijplas.2010.04.001.
- Власов А.В. О применении критерия Кокрофта-Лэтэма для прогнозирования разрушения при холодной объемной штамповке // Изв. Тульск. гос. ун-та. Техн. науки, 2017. № 11-1. С. 46-58.
- Atkins A. G. Fracture mechanics and metal forming. Damage mechanics and the local approach of yesterday and today / Fracture research in retrospective; eds. H. P. Rossmanith. Rotterdam: Balkema, 1997. pp. 327-350.
- Боткин А. В., Валиев Р., Степин П. С., Баймухаметов А. X. Оценка поврежденности металла при холодной пластической деформации c использованием модели разрушения Кокрофта-Латама // Деформация и разрушение материалов, 2011. № 7. С. 17-22.
- Isik K., Silva M. B., Tekkaya A. E., Martins P. A. F. Formability limits by fracture in sheet metal forming // J. Mat. Proc. Tech., 2014. vol. 214, no. 8. pp. 1557-1565. doi: 10.1016/j.jmatprotec.2014.02.026.
- Silva M. B., Isik K., Tekkaya A. E. et al. Fracture Toughness and Failure Limits in Sheet Metal Forming // J. Mat. Proc. Tech., 2016. vol. 234, no. 8. pp. 1557-1565. doi: 10.1016/j.jmatprotec.2016.03.029.
- Atkins A. G. Fracture in forming // J. Mat. Proc. Tech., 1996. vol. 56, no. 1-4. pp. 609-618. doi: 10.1016/0924-0136(95)01875-1.
- Tvergaard V., Needleman A. Analysis of the cup-cone fracture in a round tensile bar // Acta Metallurgica, 1984. vol. 32, no. 1. pp. 157-169. doi: 10.1016/0001-6160(84)90213-X.
- Власов А. В., Герасимов Д. А. Реализация модели Гурсо-Твергарда-Нидельмана для расчета процессов холодной объемной штамповки несжимаемых материалов // Известия высших учебных заведений. Машиностроение, 2017. № 8 (689). С. 8-17. doi: 10.18698/0536-1044-2017-8-8-17.
- Gurson A. L. Continuum theory of ductile rupture by void nucleation and growth. I. Yield criteria and flow rules for porous ductile media // J. Eng. Mater. Technol., 1977. vol. 99, no. 1. pp. 2-15. doi: 10.1115/1.3443401.
- Needleman A., Triantafyllidis N. Void growth and local necking in biaxially stretched sheets // J. Eng. Mater. Technol., 1978. vol. 100, no. 2. pp. 164-169. doi: 10.1115/1.3443466.
- Nahshon K., Hutchinson J. W. Modification of the Gurson Model for shear failure // Eur. J. Mech., A, Solids, 2008. vol. 27, no. 1. pp. 1-17. doi: 10.1016/j.euromechsol.2007.08.002.
- Andrade F. X. C., Feucht M., Haufe A., Neukamm F. An incremental stress state dependent damage model for ductile failure prediction // Int. J. Fract., 2016. vol. 200, no. 1-2. pp. 127-150. doi: 10.1007/s10704-016-0081-2.
- Andrade F. X. C., Feucht M., Haufe A. On the Prediction of Material Failure in LSDYNA ®: A Comparison Between GISSMO and DIEM: The 13th LS-DYNA International Conference (June 8-10, 2014, Dearborn, MI), 2014, Available at https://goo.gl/AQUhP9 (July 11, 2018).
- Chaboche J. L. Continuum damage mechanics: present state and future trends // Nucl. Eng. Design, 1987. vol. 105, no. 1. pp. 19-33. doi: 10.1016/0029-5493(87)90225-1.
- Lee H., Peng K. E., Wang J. An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates // Eng. Fract. Mech., 1985. vol. 21, no. 5. pp. 1031-1054. doi: 10.1016/0013-7944(85)90008-6.
- Волков И. А., Игумнов Л. А. Введение в континуальную механику поврежденной среды. М.: Физматлит, 2017. 304 с.
- Murakami S. Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture / Solid Mechanics and Its Applications. vol. 185. Netherlands: Springer, 2012. xxix+402 pp. doi: 10.1007/978-94-007-2666-6.
- Zhu Y. Y., Cescotto S. A fully coupled elasto-visco-plastic damage theory for anisotropic materials // Int. J. Sol. Struct., 1995. vol. 32, no. 11. pp. 1607-1641. doi: 10.1016/j.ijplas.2003.10.002.
- Badreddine H., Saanouni K., Nguyen T. D. Damage anisotropy and its effect on the plastic anisotropy evolution under finite strains // Int. J. Sol. Struct., 2015. vol. pp. 11-31. doi: 10.1016/j.ijsolstr.2015.02.009.
- Badreddine H., Labergère C., Saanouni K. Ductile damage prediction in sheet and bulk metal forming // Comptes Rendus Mécanique, 2016. vol. 344, no. 4-5. pp. 296-318. doi: 10. 1016/j.crme.2015.11.006.
- Simo J. C., Ju J. W. On continuum damage-elastoplasticity at finite strains. A computational framework // Computational Mechanics, 1989. vol. 5, no. 5. pp. 375-400. doi: 10.1007/bf01047053.
- Voyiadjis G. Z., Abu Al-Rub R. K., Palazotto A. N. Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory // Int. J. Plast., 2004. vol. 20, no. 6. pp. 981-1038. doi: 10.1016/j.ijplas.2003.10.002.
- Lemaitre J. A continuous damage mechanics model for ductile fracture // J. Eng. Mater. Technol., 1985. vol. 107, no. 1. pp. 83-89. doi: 10.1115/1.3225775.
- Heibel S., Nester W., Clausmeyer T., Tekkaya A.E. Influence of Different Yield Loci on Failure Prediction with Damage Models // J. Physics: IOP Conf. Series, 2017. vol. 896, 012081. doi: 10.1088/1742-6596/896/1/012081.
- Hill R. A theory of the yielding and plastic flow of anisotropic metals // Proc. R. Soc. Lond., Ser. A, 1948. vol. 193, no. 1033. pp. 281-297. doi: 10.1098/rspa.1948.0045.
- Hill R. Theoretical plasticity of textured aggregates // Math. Proc. Camb. Philos. Soc., 1979. vol. 85, no. 1. pp. 179-191. doi: 10.1017/S0305004100055596.
- Hill R. Constitutive dual potentials in classical plasticity // J. Mech. Phys. Solids, 1987. vol. 35, no. 1. pp. 23-33. doi: 10.1016/0022-5096(87)90025-1.
- Hill R. Constitutive modelling of orthotropic plasticity in sheet metals // J. Mech. Phys. Solids, 1990. vol. 38, no. 3. pp. 405-417. doi: 10.1016/0022-5096(90)90006-p.
- Hill R. A user-friendly theory of orthotropic plasticity in sheet metals // Int. J. Mech. Sci., 1993. vol. 35, no. 1. pp. 19-25. doi: 10.1016/0020-7403(93)90061-X.
- Barlat F., Lian J. Plastic behavior and stretchability of sheet metals. Part II. A yield function for orthotropic sheets under plane stress conditions // Int. J. Plast., 1989. vol. 5, no. 2. pp. 51-66. doi: 10.1016/0749-6419(89)90026-0.
- Barlat F., Lege D. J., Brem J. C. A 6-component yield function for anisotropic materials // Int. J. Plast., 1991. vol. 7, no. 7. pp. 693-712. doi: 10.1016/0749-6419(91)90052-Z.
- Barlat F., Maeda Y., Chung K. et al. Yield function development for aluminum alloy sheets // J. Mech. Phys. Solids, 1997. vol. 45, no. 11. pp. 1727-1763. doi: 10.1016/ S0022-5096(97)00034-3.
- Barlat F., Brem J. C., Yoon J. W. et al. Plane stress yield function for aluminum alloy sheets. Part 1: Theory // Int. J. Plast., 2003. vol. 19, no. 9. pp. 1297-1319. doi: 10.1016/S0749-6419(02)00019-0.
- Barlat F., Aretz H., Yoon J.W. et al. Linear transfomation-based anisotropic yield functions // Int. J. Plast., 2005. vol. 21, no. 5. pp. 1009-1039. doi: doi: 10.1016/j.ijplas.2004.06.004.
- Karafillis A. P., Boyce M. C. A general anisotropic yield criterton using bounds and a transformation weighting tensor // J. Mech. Phys. Solids, 1993. vol. 41, no. 12. pp. 1859-1886. doi: 10.1016/0022-5096(93)90073-o.
- Vial-Edwards C. Yield loci of FCC and BCC sheet metals // Int. J. Plast., 1997. vol. 13, no. 5. pp. 521-531. doi: 10.1016/S0749-6419(97)00023-5.
- Banabic D. Sheet metal forming processes. Constitutive Modelling and Numerical Simulation: Springer, 2010. xv+301 pp. doi: 10.1007/978-3-540-88113-1.
- Multiscale Modelling in Sheet Metal Forming / eds. Banabic D.: Springer, 2016. xiii+405 pp. doi: 10.1007/978-3-319-44070-5.
- ASTM E8/E8M-16a. Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken, PA, USA: ASTM International, 2016.30 pp. doi: 10.1520/E0008_E0008M-16A.
- ASTM E517-00. Standard Test Method for Plastic Strain Ratio
- Voce E. The relationship between stress and strain for homogeneous deformation // J. Inst. Met., 1948. vol. 74. pp. 537-562.
- Butuc M. C., Teodosiu C., Barlat F., Gracio J. J. Analysis of sheet metal formability through isotropic and kinematic hardening models // Eur. J. Mech., A, Solids, 2011. vol. 30, no. 4. pp. 532-546. doi: 10.1016/j.euromechsol.2011.03.005.
- Sung J. H., Kim J. H., Wagoner R. H. A plastic constitutive equation incorporating strain, strain-rate, and temperature // Int. J. Plast., 2010. vol. 26, no. 12. pp. 1746-1771. doi: 10.1016/j.ijplas.2010.02.005.
- Swift H. W. Plastic Instability under Plane Stress // J. Mech. Phys. Solids, 1952. vol. 1, no. 1. pp. 1-18. doi: 10.1016/0022-5096(52)90002-1.
- Hu P., Ma N., Liu L., Zhu Y. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming. Analysis, Simulation and Engineering Applications. London: Springer, 2013. xiv+210 pp. doi: 10.1007/978-1-4471-4099-3.
- Schotten K. Mathematische Beschreibung der Fließkurve bei der Warmumformung verschiedener Stähle: Dissertation Rheinisch-Westfälische Technische Hochschule Aachen. Shaker Verlag, 2000 (In German), Available at http://publications.rwth-aachen.de/record/58390 (July 11, 2018).
- Tong L., Stahel S., Hora P. Modeling for the FE-Simulation of Warm Metal Forming Processes // AIP Conference Proceedings, 2005. vol. 778, no. 1. pp. 625-629. doi: 10.1063/1.2011292.
- Khan A.S., Baig M. Anisotropic responses, constitutive modeling and the effects of strainrate and temperature on the formability of an aluminum alloy // Int. J. Plast., 2011. vol. 27, no. 000288980700004. pp. 522-538. doi: 10.1016/j.ijplas.2010.08.001.
- Khan A. S., Liang R. Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling // Int. J. Plast., 1999. vol. 15, no. 10. pp. 1089-1109. doi: 10.1016/S0749-6419(99)00030-3.
- Khan A. S., Liang R. Behaviors of three BCC metals during non-proportional multi-axial loadings: experiments and modeling // Int. J. Plast., 2000. vol. 16, no. 12. pp. 1443-1458. doi: 10.1016/S0749-6419(00)00016-4.
- Khan A. S., Suh Y. S., Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys // Int. J. Plast., 2004. vol. 20, no. 12. pp. 2233-2248. doi: 10.1016/j.ijplas.2003.06.005.
- Zener C., Hollomon J. H. Effect of Strain Rate Upon Plastic Flow of Steel // J. Appl. Phys., 1944. vol. 15, no. 1. pp. 22-32. doi: 10.1063/1.1707363.
- Puchi-Cabrera E. S. , Staia M. H., Guerin J. D. et al. An experimental analysis and modeling of the work-softening transient due to dynamic recrystallization // Int. J. Plast., 2014. vol. 54. pp. 113-131. doi: 10.1016/j.ijplas.2013.08.011.
- Nemat-Nasser S. Experimentally-based micromechanical modeling of metal plasticity with homogenization form micro-to-macro-scale properties / IUTAM Symposium on Micro- and Macrostructural Aspects of Thermoplasticity, 1999. pp. 101-113.
- Panicker S. S., Panda S. K. Formability Analysis of AA5754 Alloy at Warm Condition: Appraisal of Strain Rate Sensitive Index // Materials Today: Proceedings, 2015. vol. 2, no. 4-5. pp. 1996-2004. doi: 10.1016/j.matpr.2015.07.169.
- Lang L., Du P., Liu B., Cai G., Liu K. Pressure rate controlled unified constitutive equations based on microstructure evolution for warm hydroforming // J. All. Compounds, 2013. vol. 574. pp. 41-48. doi: 10.1016/j.jallcom.2013.03.134.
- Chen H., Cao Ch., Guo L., Lin H. Hot deformation mechanism and microstructure evolution of TC11 titanium alloy in
- Quan G., Liu K., Zhou J., Chen B. Dynamic softening behaviors of 7075 aluminum alloy // Trans. Nonferrous Met. Soc. China, 2009. vol. 199. pp. 537-541. doi: 10.1016/S1003-6326(10)60104-5.
- Шестериков С. А., Юмашева М. А. Конкретизация уравнения состояния при ползучести // Изв. АН СССР. МТТ, 1984. № 1. С. 86-91.
- Alexandrov S., Mishuris G. Viscoplasticity with a saturation stress: distinguishing features of the model // Arch. Appl. Mech., 2007. vol. 77, no. 1. pp. 35-47. doi: 10.1007/s00419-006-0078-9.
- Hill R. On Discontinuous Plastic States, with Special Reference to Localized Necking in Thin Sheets // J. Mech. Phys. Solids, 1952. vol. 1, no. 1. pp. 19-30. doi: 10.1016/0022-5096(52)90003-3.
- Hutchinson J. W., Neale K. W. Sheet necking: II. Time-independent behavior / Mechanics of sheet metal forming; eds. D. P. Koistinen, N. M. Wang. Boston, MA: Springer, 1978. pp. 111-126. doi: 10.1007/978-1-4613-2880-3_6.
- Kotkunde N., Srinivasan S., Krishna G., Gupta A.K., Singh S.K. Influence of material models on theoretical forming limit diagram prediction for Ti-6Al-4V alloy under warm condition // Trans. Nonferrous Met. Soc. China, 2016. vol. 26. pp. 736-746. doi: 10.1016/S1003-6326(16)64140-7.
- Chu C.-C. An analysis of localized necking in punch stretching // Int. J. Sol. Struct., 1980. vol. 16, no. 10. pp. 913-931. doi: 10.1016/0020-7683(80)90057-8.
- Davies R. W., Grant G. J., Khaleel M. A. et all. Forming-limit diagrams of aluminum tailor-welded blank weld material // Metall. Mat. Trans. A, 2001. vol. 32, no. 2. pp. 275-283. doi: 10.1016/0020-7683(80)90057-8.
- Graf A., Hosford W. F. Calculations of Forming Limit Diagrams // Metall. Trans. A, 1990. vol. 21, no. 1. pp. 87-94. doi: 10.1007/BF02656427.
- Lian J., Baudelet B. Forming Limit Diagram of Sheet Metal in the Negative Minor Strain Region // Mat. Sci. Eng., 1987. vol. 86. pp. 137-144. doi: A1987G315300011.
- Lian J., Barlat F., Baudelet B. Plastic behaviour and stretchability of sheet metals. Part II: Effect of yield surface shape on sheet forming limit // Int. J. Plast., 1989. vol. 5, no. 2. pp. 131-147. doi: 10.1016/0749-6419(89)90026-0.
- Bruschi S., Altan T., Banabic D., Bariani P.F. et al. Testing and modelling of material behaviour and formability in sheet metal forming // CIRP Annals - Manufacturing Technology, 2014. vol. 63, no. 2. pp. 727-749. doi: 10.1016/j.cirp.2014.05.005.
- Altmeyer G. Theoretical and Numerical Comparison of Limit Point Bifurcation and Maximum Force Criteria. Application to the Prediction of Diffuse Necking // Modeling and Numerical Simulation of Material Science, 2013. vol. 3, no. 1. pp. 39-47. doi: 10.4236/mnsms.2013.31006.
- Khan A. S., Liu H. Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals // Int. J. Plast., 2012. vol. 37. pp. 1-15. doi: 10.1016/j.ijplas.2012.01.012.
- Khan A. S., Suh Y. S., Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys // Int. J. Plast., 2004. vol. 20, no. 12. pp. 2233-2248. doi: 10.1016/j.ijplas.2003.06.005.
- Safari M., Hoseinipour S. J., Azodic H.D., Yousefzadeha Sh. Experimental and Theoretical Investigation of Forming Limit Diagram (FLD) and Forming Limit Stress Diagram (FLSD) For Aluminum Alloy 3105 / International Conference On Advances In Materials And Processing Technologies (AMPT2010) (Paris, France, 24-27 October 2010) / AIP Conference Proceedings, 1315; ed. F. Chinesta, Y. Chastel, M. El Mansori, 2011. pp. 45-50. doi: 10.1063/1.3552488.
- Park N., Huh H., Lim S. J., Lou Y. et al. Fracture-based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming // Int. J. Plast., 2017. vol. 96. pp. 1-35. doi: 10.1016/j.ijplas.2016.04.014.
- Pourboghrat F., Venkatesan S., Carsley J. E. LDR and hydroforming limit for deep drawing of AA5754 aluminum sheet // J. Manuf. Process., 2013. vol. 15, no. 4. pp. 600-615. doi: 10.1016/j.jmapro.2013.04.003.
- Beaudoin A. J., Dawson P. R., Mathur K. K. et al. Application of Polycrystal Plasticity to Sheet Forming // Computer Methods in Applied Mechanics and Engineering, 1994. vol. 117, no. 1-2. pp. 49-70. doi: 10.1016/0045-7825(94)90076-0.
- Brunet M., Morestin F. Experimental and analytical necking studies of anisotropic sheet metals // J. Mat. Proc. Tech., 2001. vol. 112, no. 2-3. pp. 214-226. doi: 10.1016/S0924-0136(01)00578-7.
- Изосимова С. В. Исследование влияния формы заготовки на точность построения диаграммы предельных деформаций / Студенческая научная весна: Машиностроительные технологии [Электронный ресурс]: Труды Всероссийской научно-технической конференции. М.: МГТУ им. Н. Э Баумана, Available at http://studvesna.qform3d.ru/?go=articles&id=810 (July 11, 2018).
- Hecker S. S. Simple technique for determining forming limit curves // Sheet Metal Industries, 1975. vol. 5, no. 9. pp. 671-676.
- Djavanroodi F., Derogar A. Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets // Materials and Design, 2010. vol. 31, no. 10. pp. 4866-4875. doi: 10.1016/j.matdes.2010.05.030.
- Tadros A. K., Mellor P. B. An experimental study of the in-plane stretching of sheet metal // Int. J. Mech. Sci., 1978. vol. 20, no. 2. pp. 121-134. doi: 10.1016/0020-7403(78)90073-5.
- Gronostajski J., Dolny A. Determination of forming limit curves by means of Marciniak punch // Memories Sci. Rev. Metal., 1980. vol. 4. pp. 570-578.
- Raghavan K. S. A simple technique to generate in-plane forming limit curves and selected applications // Metall. Trans. A, 1995. vol. 26, no. 8. pp. 2075-2084. doi: 10.1007/BF02670679.
- Kuroda M., Tvergaard V. Forming limit diagrams for anisotropic metal sheets with different yield criteria // Int. J. Sol. Struct., 2000. vol. 37, no. 37. pp. 5037-5059. doi: 10.1016/S0020-7683(99)00200-0.
- Avila A. F., Vieira E. L. S. Proposing a better forming limit diagram prediction: a comparative study // J. Mat. Proc. Tech., 2003. vol. 141, no. 1. pp. 101-108. doi: 10.1016/S0924-0136(03)00163-6.
- Wang L., Lee T. C. The effect of yield criteria on the forming limit curve prediction and the deep drawing process simulation // International Journal of Machine Tools and Manufacture, 2006. vol. 46, no. 9. pp. 988-995. doi: 10.1016/j.ijmachtools.2005.07.050.
- Kumar S. D., Jeyasingh J. J. V., Amjith T. R. Development of Nakazima Test Simulation Tool for Forming Limit Diagram Generation of Aluminium Alloys // International Journal of Engineering Studies and Technical Approach, 2015. vol. 1, no. 10. pp. 37-45, Available at http://ijesta.com/upcomingissue/05.10.2015.pdf (July 11, 2018).
- Xu F., Zhao S. D., Han X. L. Use of a modified Gurson model for the failure behavior of the clinched joint on Al6061 sheet // Fatigue Fract. Engng. Mater. Struct., 2014. vol. 37, no. 3. pp. 335-348. doi: 10.1111/ffe.12118.
- Safdarian R. Stress based forming limit diagram for formability characterization of 6061 aluminum // Trans. Nonferrous Met. Soc. China, 2016. vol. 26, no. 9. pp. 2433-2441. doi: 10.1016/S1003-6326(16)64350-9.
Supplementary files
