Stochastic models of simple controlled systems just-in-time
- Authors: Butov A.A1, Kovalenko A.A1
-
Affiliations:
- Ulyanovsk State University
- Issue: Vol 22, No 3 (2018)
- Pages: 518-531
- Section: Articles
- URL: https://journal-vniispk.ru/1991-8615/article/view/20603
- DOI: https://doi.org/10.14498/vsgtu1633
- ID: 20603
Cite item
Full Text
Abstract
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Alexander A Butov
Ulyanovsk State University
Email: butov.a.a@gmail.com
Dr. Phys. & Math. Sci., Professor; Head of Dept.; Dept. of Applied Mathematics 42, L. Tolstoy st., Ulyanovsk, 432017, Russian Federation
Anatoly A Kovalenko
Ulyanovsk State University
Email: anako09@mail.ru
M. Sc.; Postgraduste Student; Dept. of Applied Mathematics 42, L. Tolstoy st., Ulyanovsk, 432017, Russian Federation
References
- Sugimori Y., Kusunoki K., Cho F., Uchikawa S. Toyota production system and kanban system materialization of just-in-time and respect-for-human system, Int. J. Prod. Res., 1977, vol. 15, no. 6, pp. 553-564. doi: 10.1080/00207547708943149.
- Yavuz M., Akçali E. Production smoothing in just-in-time manufacturing systems: a review of the models and solution approaches, Int. J. Prod. Res., 2007, vol. 45, no. 16, pp. 3579-3597. doi: 10.1080/00207540701223410.
- Killi S., Morrison A. Just-in-Time Teaching, Just-in-Need Learning: Designing towards Optimized Pedagogical Outcomes, Universal Journal of Educational Research, 2015, vol. 3, no. 10, pp. 742-750. doi: 10.13189/ujer.2015.031013.
- McGee M., Stokes L., Nadolsky P. Just-in-Time Teaching in Statistics Classrooms, Journal of Statistics Education, 2016, vol. 24, no. 1, pp. 16-26. doi: 10.1080/10691898.2016.1158023.
- Aycock J. A brief history of just-in-time, ACM Computing Surveys, 2003, vol. 35, no. 2, pp. 97-113. doi: 10.1145/857076.857077.
- Pape T., Bolz C. F., Hirschfeld R. Adaptive just-in-time value class optimization for lowering memory consumption and improving execution time performance, Science of Computer Programming, 2017, vol. 140, pp. 17-29. doi: 10.1016/j.scico.2016.08.003.
- Elliott R. J., Tsoi A. H. Time reversal of non-Markov point processes, Ann. Inst. Henri Poincaré, 1990, vol. 26, no. 2, pp. 357-373, https://eudml.org/doc/77383.
- Jacod J., Protter P. Time Reversal on Levy Processes, Ann. Probab., 1988, vol. 16, no. 2, pp. 620-641. doi: 10.1214/aop/1176991776.
- Főllmer H. Random fields and diffusion processes, In: École d’Été de Probabilités de Saint-Flour XV-XVII, 1985-87, Lecture Notes in Mathematics, 1362; eds. PL. Hennequin. Berlin, Heidelberg, Springer, 1988, pp. 101-203. doi: 10.1007/BFb0086180.
- Privault N., Zambrini J.-C. Markovian bridges and reversible diffusion processes with jumps, Annales de l’I.H.P. Probabilités et statistiques, 2004, vol. 40, no. 5, pp. 599-633. doi: 10.1016/j.anihpb.2003.08.001.
- Longla M. Remarks on limit theorems for reversible Markov processes and their applications, J. Stat. Plan. Inf., 2017, vol. 187, pp. 28-43. doi: 10.1016/j.jspi.2017.02.009.
- Conforti G., Léonard C., Murr R., Roelly S. Bridges of Markov counting processes. Reciprocal classes and duality formulas, Electron. Commun. Probab., 2015, vol. 20, no. 18, pp. 1-12. doi: 10.1214/ECP.v20-3697.
- Dellacherie C. Capacités et processus stochastiques. Berlin, Springer-Verlag, 1972, ix+155 pp.
- Butov A. A. Some estimates for a one-dimensional birth and death process in a random environment, Theory Probab. Appl., 1991, vol. 36, no. 3, pp. 578-583. doi: 10.1137/1136067.
- Butov A. A. Martingale methods for random walks in a one-dimensional random environment, Theory Probab. Appl., 1994, vol. 39, no. 4, pp. 558-572. doi: 10.1137/1139043.
- Butov A. A. Random walks in random environments of a general type, Stochastics and Stochastics Reports, 1994, vol. 48, pp. 145-160. doi: 10.1080/17442509408833904.
- Butov A. A. On the problem of optimal instant observations of the linear birth and death processes, Statistics and Probability Letters, 2015, vol. 101, pp. 49-53. doi: 10.1016/j.spl.2015.02.021.
Supplementary files
