Generalized integral Laplace transform and its application to solving some integral equations


Cite item

Full Text

Abstract

We present integral transforms $\widetilde {\mathcal L}\left\{f(t);x\right\}$ and $\widetilde {\mathcal L}_{\gamma_1,\gamma_2,\gamma} \left\{f(t);x\right\}$, generalizing the classical Laplace transform. The $(\tau, \beta)$-generalized confluent hypergeometric functions are the kernels of these integral transforms. At certain values of the parameters these transforms coincides with the famous classical Laplace transform. The inverse formula for the transforms is given. The convolution theorem for transform $\widetilde {\mathcal L}\left\{f(t);x\right\}$ is proven. Volterra integral equations of the first kind with core containing the generalized confluent hypergeometric function ${\mathstrut}_1\Phi{\mathstrut}_1^{\tau,\beta}(a;c;z)$ are considered. The above equation is solved by the method of integral transforms. The treatment of integral transforms is applied to get the desired solution of the integral equation. The solution is obtained in explicit form.

About the authors

Svetlana M Zaikina

Samara State Technical University

Email: svetzai@inbox.ru
Postgraduate Student, Dept. of Applied Mathematics & Computer Science 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. A. Erdélyi, Tables of Integral Transforms (Bateman Manuscript Project), New York, McGraw-Hill, 1954 (vol. 1, Moscow, Nauka, 1969; vol. 2, Moscow, Nauka, 1970 [Russian translation]).
  2. В. А. Диткин, А. П. Прудников, Интегральные преобразования и операционное исчисление, М.: Наука, 1974. 542 с.
  3. V. A. Ditkin, A. P. Prudnikov, Integral transforms and operational calculus / International series of monographs in pure and applied mathematics, vol. 78, Oxford, New York, Pergamon Press, 1965, xi+529 pp.
  4. A. A. Kilbas, M. Saigo, H-Transforms: Theory and Applications / Series on Analytic Methods and Special Functions, vol. 9, Boca Raton, CRC Press, 2004, xii+389 pp.
  5. I. N. Sneddon, The use of integral transforms, New York etc., McGraw-Hill Book Comp., 1972, xii+539 pp.
  6. Н. О. Вiрченко, Парнi (N -арнi) iнтегральнi рiвняння, Киïв Задруга, 2009. 476 с.
  7. N. Virchenko, “On the generalized confluent hypergeometric function and its applications” // Fract. Calc. Appl. Anal., 2006. vol. 9, no. 2. pp. 101-108.
  8. E. M. Wright, “The Asymptotic Expansion of the Generalized Hypergeometric Function” // J. London Math. Soc., 1935. vol. s1-10, no. 4. pp. 286-293. doi: 10.1112/jlms/s1-10.40.286.
  9. О. А. Репин, С. М. Заикина, “Некоторые новые обобщенные интегральные преобразования и их применение в теории дифференциальных уравнений” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. No 2(23). С. 8-16. doi: 10.14498/vsgtu913.
  10. N. Virchenko, S. L. Kalla, S. Zaikina, “On some generalized integral transforms” // Handronic Journal, 2009. vol. 32, no. 5. pp. 539-548.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).