On the accuracy of difference scheme for Navier-Stokes equations


Cite item

Full Text

Abstract

The article presents a study of difference schemes in time, which accuracy can be arbitrarily high. We present difference schemes in time for solving the Navier-Stokes equations, where series expansions are used to find the singularities of solutions of the Euler equations. These methods are generalized in this article for the arbitrary order schemes and for solving the Burgers equation and the Navier-Stokes equations for an incompressible fluid. The impact of the scheme on the calculation accuracy is examined. First, the method is applied to the test case associated with the Burgers equation, and then the problem of three-dimensional incompressible flow finding by solving the Navier-Stokes equations is considered. It is shown that the finite-difference scheme used to calculate the time derivatives is the main source of deviations of the approximate solution from the exact solution.

About the authors

Nikolay I Sidnyaev

N. E. Bauman Moscow State Technical University

Email: sydnyaev@bmstu.ru
(Dr. Techn. Sci.), Head of Department, Dept. of Higher Mathematics 5/1, 2-ya Baumanskaya st., Moscow, 105005, Russian Federation

Nadezhda M Gordeeva

N. E. Bauman Moscow State Technical University

Email: nmgordeeva@bmstu.ru
Assistant, Dept. of Higher Mathematics 5/1, 2-ya Baumanskaya st., Moscow, 105005, Russian Federation

References

  1. Л. Г. Лойцянский, Механика жидкости и газа, М.: Наука, 1970. 904 с.
  2. В. Я. Нейланд, В. В. Боголепов, Г. Н. Дудин, И. И. Липатов, Асимптотическая теория сверхзвуковых течений вязкого газа, М.: Физматлит, 2003. 456 с.
  3. V. Ya. Neiland, V. V. Bogolepov, G. N. Dudin, I. I. Lipatov, Asymptotic Theory of Supersonic Viscous Gas Flows, Oxford, The Netherlands, Elsiever, 2008, xxv+536 pp.
  4. В. В. Боголепов, “Исследование малых пространственных возмущений ламинарного пограничного слоя” // ПМТФ, 1987. No 5. С. 12-32.
  5. V. V. Bogolepov, “Small perturbations of a laminar boundary layer” // J. Appl. Mech. Tech. Phys., 1987. vol. 28, no. 5. pp. 706-716. doi: 10.1007/BF00912023.
  6. В. А. Башкин, Г. Н. Дудин, Пространственные гиперзвуковые течения вязкого газа, М.: Наука, 2000. 288 с.
  7. J. Gazdag, “Numerical convective schemes based on accurate computation of space derivatives” // J. Comput. Phys., 1973. vol. 13, no. 1. pp. 100-113. doi: 10.1016/0021-9991(73)90128-9.
  8. J. Gazdag, “Time-differencing schemes and transform methods” // J. Comput. Phys., 1976, vol. 20, no. 2, pp. 196-207. doi: 10.1016/0021-9991(76)90064-4.
  9. Н. И. Сидняев, “Метод расчета нестационарного обтекания тела вращения с поверхностным массообменом в рамках параболизированных уравнений Навье-Стокса” // Матем. моделирование, 2004. Т. 16, No 5. С. 55-65.
  10. Н. И. Сидняев, Д. А. Сиротовский, “О точности разностных схем для уравнений Бюргерса и Навье-Стокса” / Необратимые процессы в природе и технике. Тезисы докладов Третьей Всероссийской конференции, М.: МГТУ им. Н. Э. Баумана, 2005. 132-133 с.
  11. Y. Morchoisne, “Résolution des équations de Navier-Stokes par une méthode pseudo-spectrale en espace-temps” // Rech. Aérosp., 1979. vol. 5. pp. 293-306. (In French).
  12. Ph. Roy, “Résolution des équations de Navier-Stokes par un schema de haute précision en espace et en temps” // Rech. Aérosp., 1980. vol. 6. pp. 373-385. (In French).
  13. Я. И. Белопольская, “Обобщенные решения систем нелинейных параболических уравнений и метод исчезающей вязкости” / Вероятность и статистика. 7 / Зап. научн. сем. ПОМИ, Т. 311, СПб.: ПОМИ, 2004. С. 7-39.
  14. Ya. I. Belopolskaya, “Generalized Solutions of Nonlinear Parabolic Systems and the Vanishing Viscosity Method” // J. Math. Sci. (N. Y.), 2006, vol. 133, no. 3, pp. 1207-1223. doi: 10.1007/s10958-006-0031-z.
  15. L. Bertini, N. Cancrini, G. Jona-Lasinio, “The stochastic Burgers Equation” // Comm. Math. Phys., 1994. vol. 165, no. 2. pp. 211-232. doi: 10.1007/BF02099769.
  16. I. M. Davies, A. Truman, H. Zhao, “Stochastic heat and Burgers equations and their singularities. I. Geometrical properties” // J. Math. Phys., 2002. vol. 43, no. 6. pp. 3293-3328. doi: 10.1063/1.1471925.
  17. O. O. Obrezkov, “The Proof of the Feynman-Kac Formula for Heat Equation on a Compact Riemannian Manifold” // Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 2003. vol. 6, no. 2. pp. 311-320. doi: 10.1142/S0219025703001109.
  18. O. G. Smolyanov, H. von Weizsäcker, “Smooth probability measures and associated differential operators” // Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 1999. vol. 2, no. 1. pp. 51-78. doi: 10.1142/s0219025799000047.
  19. O. G. Smolyanov, H. von Weizsäcker, O. Wittich, “Brownian motion on a manifold as a limit of stepwise conditioned standard Brownian motions” // Canadian Mathematical Society, Conference Proceedings. V. 29. ed. J. Jost, 2000, pp. 589-602.
  20. О. Г. Смолянов, Х. фон Вайцзеккер, О. Виттих, “Поверхностные меры и начально-краевые задачи, порождаемые диффузиями со сносом” // Докл. РАН, 2007. Т. 415, No 6. С. 737-741.
  21. O. G. Smolyanov, H. von Weizsäcker, O. Wittich, “Surface Measures and Initial Boundary Value Problems Generated by Diffusions with Drift” // Doklady Mathematics, 2007. vol. 76, no. 1. pp. 606-610. doi: 10.1134/s1064562407040321.
  22. A. Truman, H. Z. Zhao, “On stochastic diffusion equations and stochastic Burgers’ equations” // J. Math. Phys., 1996. vol. 37, no. 1. pp. 283-307. doi: 10.1063/1.531391.
  23. H. J. Wospakrik, F. P. Zen, Inhomogeneous Burgers Equation and the Feynman-Kac Path Integral, 1998, 12 pp., arXiv: solv-int/9812014
  24. S. E. Matskevich, “Burgers equation and Kolmogorov-Petrovsky-Piskunov equation on manifolds” // Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 2011. vol. 14, no. 2. pp. 199-208. doi: 10.1142/S0219025711004341.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).