Метод расширенных нормальных уравнений для задач регуляризации Тихонова с дифференцирующим оператором


Цитировать

Полный текст

Аннотация

Рассматривается новый метод решения плохо обусловленных линейных алгебраических систем с применением дифференцирующего оператора. Такого вида задачи возникают при решении интегральных уравнений Фредгольма первого рода. Основная сложность данного метода состоит в том, что матрица дискретного аналога оператора дифференцирования является матрицей неполного ранга. Для решения подобного класса задач используются методы, основанные на обобщенном сингулярном разложении. Этот подход имеет очень высокую вычислительную сложность, а также приводит к возникновению дополнительной погрешности в вычислениях. Предложенный в данной работе метод основан на преобразовании исходной задачи регуляризации к эквивалентной расширенной регуляризованной нормальной системе уравнений с применением дискретного аналога оператора дифференцирования. Весьма актуальной является проблема исследования спектра матрицы расширенной регуляризованной нормальной системы уравнений с матрицей дискретного оператора дифференцирования неполного ранга. Исследование точного спектра собственных значений для данной задачи не представляется возможным, поэтому в статье получены оценки границ спектра матрицы. Оценка границ спектра матрицы основана на известной теореме Куранта-Фишера. Показано, что полученные оценки границ спектра матрицы расширенной системы являются достаточно точными. Производится сравнение предложенного метода со стандартным методом, основанным на решении нормальной системы уравнений. В работе показано, что число обусловленности матрицы метода, основанного на нормальной системе уравнений, имеет намного большую величину, чем число обусловленности матрицы метода расширенных нормальных уравнений. В заключении приводится описание тестовых задач, подтверждающих результаты теоретических исследований, полученных в работе.

Об авторах

Александр Иванович Жданов

Самарский государственный технический университет

Email: zhdanovaleksan@yandex.ru
(д.ф.-м.н., проф.; zhdanovaleksan@yandex.ru), декан, факультет дистанционного и дополнительного образования Россия, 443100, Самара, ул. Молодогвардейская, 244

Иван Александрович Михайлов

Самарский государственный технический университет

Email: mikhaylovivan90@mail.ru
(mikhaylovivan90@mail.ru; автор, ведущий переписку), аспирант, каф. высшей математики и прикладной информатики Россия, 443100, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Abdelmalek N. N. A program for the solution of ill-posed linear systems arising from the discretization of the Fredholm integral equation of the first kind // Computer Physics Communications, 1990. vol. 58, no. 3. pp. 285-292. doi: 10.1016/0010-4655(90)90064-8.
  2. Delves L. M., Mohamed J. L. Computational Methods for Integral Equations. Cambridge: Cambridge University Press, 1985. 376+xii pp. doi: 10.1017/CBO9780511569609.
  3. Hansen P. C. REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems // Numerical Algorithms, 1994. vol. 6, no. 1. pp. 1-35. doi: 10. 1007/BF02149761.
  4. Bouhamidi A., Jbilou K., Reichel L., Sadok H. An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure // Linear Algebra and Its Applications, 2011. vol. 434, no. 7. pp. 1677-1688. doi: 10.1016/j.laa.2010.06.001.
  5. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979. 286 с.
  6. Phillips D. L. A technique for the numerical solution of certain integral equations of the first kind // JACM, 1962. vol. 9, no. 1. pp. 84-97. doi: 10.1145/321105.321114.
  7. Björck Å., Eldén L. Methods in numerical algebra for ill-posed problems: Technical Report LiTH-MAT-R33-1979. Linköping, Sweden, 1979. 267 pp.
  8. Wing G. M. A Primer on Integral Equations of the First Kind / Other Titles in Applied Mathematics. Los Alamos, New Mexico: Los Alamos National Laboratory, 1991. 141+xiv pp. doi: 10.1137/1.9781611971675.
  9. Bauer F., Lukas M. A. Comparingparameter choice methods for regularization of ill-posed problems // Mathematics and Computers in Simulation, 2011. vol. 81, no. 9. pp. 1795-1841. doi: 10.1016/j.matcom.2011.01.016.
  10. Liu C.-S. A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems // Acta Applicandae Mathematicae, 2013. vol. 123, no. 1. pp. 285-307. doi: 10.1007/s10440-012-9766-3.
  11. Hansen P. C. Regularization Tools version 4.0 for Matlab 7.3 // Numer. Algor., 2007. vol. 46, no. 2. pp. 189-194. doi: 10.1007/s11075-007-9136-9.
  12. Жданов А. И. Метод расширенных регуляризованных нормальных уравнений // Ж. вычисл. матем. и матем. физ., 2012. Т. 52, № 2. С. 205-208.
  13. Stor N. J., Slapničar I., Barlow J. L. Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications // Linear Algebra and its Application, 2015. vol. 464, no. 1. pp. 62-89, arXiv: 1302.7203 [math.NA]. doi: 10.1016/j.laa.2013.10.007.
  14. Demmel J. W. Applied Numerical Linear Algebra / Other Titles in Applied Mathematics. Berkeley: University of California, 1997. 416+xi pp. doi: 10.1137/1.9781611971446.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».