On a stability of polar symmetrical deformation of bodies from softening materials


Cite item

Full Text

Abstract

Special case of continuum mechanical systems is considered. It is believed that deforming is carried out under conditions of polar symmetry of stresses and strains. Also it is assumed that material properties are described by Hencky model with softening under nonpositivity of volume deformation. Then union curve has region decreasing to zero. Aforementioned conditions are realized in such problems as expansion of spherical cavity in softening space and deforming of thick-walled spherical vessel by equable external pressure (it maybe bathyscaphe which is gradually submerged to the deep). Based on the Lagrange formalism integral quadratic functional is investigated. This functional is increment of total potential energy in the form of Lagrangian for mentioned problems. This study allows to formulate conditions of buckling for active loading which changes quasistatically. For considered problems sets of possible deformations are obtained. These possible deformations perturb the equilibrium position and do not break kinematic constraints. Obtained sets of possible deformations allow to write criterion of buckling of deformation process in explicit form for mentioned problems. It is established that only with sufficiently developed softening zone buckling of deformation process is possible.

About the authors

Valery V Struzhanov

Institute of Engineering Science, Ural Branch of RAS

Email: stru@imach.uran.ru
(Dr. Phys. & Math. Sci.; stru@imach.uran.ru), Chief Researcher, Lab. of Matherial Micromechanics 34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation

Kirill V Berdnikov

Institute of Engineering Science, Ural Branch of RAS

Email: kir.berdnikov@mail.ru
(kir.berdnikov@mail.ru; Corresponding Author), Postgraduate Student, Lab. of Matherial Micromechanics 34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation

References

  1. Drucker D. C. A definition of a stable inelastic material // ASME J. Appl. Mech., 1959. vol. 26. pp. 101-195.
  2. Стружанов В. В., Бурмашева Н. В. Вычислительная процедура нахождения предельных значений параметров нагружения механических систем // Вычислительная механика сплошных сред, 2011. Т. 4, № 4. С. 107-113. doi: 10.7242/1999-6691/2011.4.4.45.
  3. Стружанов В. В., Просвиряков Е. Ю. Растяжение с кручением. Сообщение 2: Устойчивость процесса деформирования образца в механической системе. Жесткое и мягкое нагружения // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2008. № 2(17). С. 77-86. doi: 10.14498/vsgtu403.
  4. Седов Л. И. Механика сплошной среды. Т. 1. М.: Наука, 1970. 492 с.
  5. Стружанов В. В., Миронов В. И. Деформационное разупрочнение материала в элементах конструкций. Екатеринбург: УрО РАН, 1995. 192 с.
  6. Гилмор Р. Прикладная теория катастроф. В 2-х книгах. Кн. 1. М.: Мир, 1984. 350 с.
  7. Постон T., Стюарт И. Tеория катастроф и её приложения. М.: Мир, 1980. 608 с.
  8. Арнольд В. И. Математические методы классической механики. М.: Наука, 1979. 432 с.
  9. тер Хаар Д. Основы гамильтоновой механики. М.: Наука, 1974. 224 с.
  10. Парс Л. А. Аналитическая динамика. М.: Наука, 1971. 636 с.
  11. Ковалев В. А., Радаев Ю. Н. Математические модели и современные физические теории поля // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 2009. Т. 9, № 4(2). С. 41-94.
  12. Ильюшин А. А. Пластичность. Часть 1. Упруго-пластические деформации. М., Л.: ОГИЗ, 1948. 378 с.
  13. Стружанов В. В., Бердников К. В. Об определяющих соотношениях среды Генки для разупрочняющегося материала при диагональном тензоре деформаций // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 3(28). С. 72-80. doi: 10.14498/vsgtu1115.
  14. Лурье А. И. Tеория упругости. М.: Наука, 1970. 940 с.
  15. Хан Х. Tеория упругости. Основы линейной теории и её применения. М.: Мир, 1988. 344 с.
  16. Васидзу К. Вариационные методы в теории упругости и пластичности. М.: Мир, 1987. 542 с.
  17. Хорн Р., Джонсон Ч. Матричный анализ. М: Мир, 1989. 655 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».