On the one property of the free components concerning to the sum of equal powers
- Authors: Nikonov A.I1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 18, No 3 (2014)
- Pages: 161-168
- Section: Articles
- URL: https://journal-vniispk.ru/1991-8615/article/view/20767
- DOI: https://doi.org/10.14498/vsgtu1333
- ID: 20767
Cite item
Full Text
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Alexander I Nikonov
Samara State Technical University
Email: nikonovai@mail.ru
(Dr. Techn. Sci.; nikonovai@mail.ru), Professor, Dept. of Electronic Systems and Information Security 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation
References
- Beery J. Sums of Powers of Positive Integers: Loci (July 2010), 2010. doi: 10.4169/loci003284.
- Oral H. K., Unal H. Extending al-Karaji’s Work on Sums of Odd Powers of Integers: Loci (August 2011), 2011. doi: 10.4169/loci003725.
- Wang X., Yang S. On solving equations of algebraic sum of equal powers // Science in China Series A: Mathematics, 2006. vol. 49, no. 9. pp. 1153-1157. doi: 10.1007/s11425-006-1153-y.
- De Koninck J.-M., Luca F. Integers divisible by sums of powers of their prime factors // Journal of Number Theory, 2008. vol. 128, no. 3. pp. 557-563. doi: 10.1016/j.jnt.2007.01.010.
- Torabi-Dashti M. Faulhaber’s Triangle // The College Mathematics Journal, 2011. vol. 42, no. 2. pp. 96-97. doi: 10.4169/college.math.j.42.2.096.
- Almismari N. A new method to express sums of power of integers as a polynomial equation: viXra:1211.0102, 2012. 9 pp.
- Guo S., Shen Y. On Sums of Powers of Odd Integers // Journal of Mathematical Research with Applications, 2013. vol. 33, no. 6. pp. 666-672. doi: 10.3770/j.issn:2095-2651.2013.06.003.
- Suprijanto D., Rusliansyah. Observation on sums of powers of integers divisible by four // Applied Mathematical Sciences, 2014. vol. 8, no. 45. pp. 2219-2226. doi: 10.12988/ams.2014.4140.
- Cereceda J. L. A determinant formula for sums of powers of integers // International Mathematical Forum, 2014. vol. 9, no. 17. pp. 785-795. doi: 10.12988/imf.2014.4461.
- Никонов А. И. Об одном свойстве взвешенных сумм одинаковых степеней как матричных произведений // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 5(21). С. 313-317. doi: 10.14498/vsgtu816.
- Никонов А. И. Модифицированное описание компонентов, образующих сумму взвешенных одинаковых степеней // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 1(26). С. 223-232. doi: 10.14498/vsgtu1016.
- Никонов А. И. Комбинаторное представление суммы взвешенных одинаковых степеней членов арифметической прогрессии // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 4(33). С. 184-191. doi: 10.14498/vsgtu1288.
- Haggarty R. Discrete mathematics for computing. Harlow: Addison-Wesley, 2002. 235+xii pp.
- Strang G. Linear Algebra and its Applications. 2nd ed. New York, San Francisco, London: Academic Press, 1980. 414+xi pp. doi: 10.1016/B978-0-12-673660-1.50001-0
- Riordan J. An introduction to combinatorial analysis. Princeton, New Jersey: Princeton University Press, 1980. 244+xii pp.
Supplementary files
