Boundary value problem for mixed type equation of the third order with periodic conditions


Cite item

Full Text

Abstract

The problem for the equation of the mixed elliptic-hyperbolic type with nonlocal boundary conditions is viewed. This problem is reduced to the inverse problem for elliptichyperbolic equation with unknown right-hand parts. The criterion of the uniqueness is established. The explicit solution is constructed as the sum of orthogonal trigonometric series of the one-dimensional spectral problem eigenfunctions. The argumentation of the series convergence under some restrictions is given. The stability of the solution by the boundary functions is proved.

About the authors

Kamil B Sabitov

Institute of Applied Research

Email: sabitov_fmf@mail.ru
(Dr. Phys. & Math. Sci.), Director 68, Odesskaya st., Sterlitamak, Russia, 453103

Galina Yu Udalova

Samara State University of Architecture and Civil Engineering

Email: yeyeg@yandex.ru
Postgraduate Student, Dept. of Higher Mathematics 194, Molodogvardeyskaya st., Samara, 443001, Russia

References

  1. А. В. Бицадзе, М. С. Салахитдинов, “К теории уравнений смешанно-составного типа” // Сиб. матем. журн., 1961. Т. 2, № 1. С. 7–19.
  2. Т. Д. Джураев, Краевые задачи для уравнений смешанного и смешанно-составного типов. Ташкент: Фан, 1979. 239 с.
  3. А. И. Кожанов, Краевые задачи для неклассических уравнений математической физики нечетного порядка. Новосибирск: НГУ, 1990. 150 с.
  4. К. Б. Сабитов, “Об одной краевой задаче для уравнения смешанного типа третьего порядка” // Докл. РАН, 2009. Т. 427, № 5. С. 593–596.
  5. К. Б. Сабитов, “Задача Дирихле для уравнения смешанного типа третьего порядка в прямоугольной области” // Диффер. уравн., 2011. Т. 47, № 5. С. 705–713.
  6. А. Н. Тихонов, “Об устойчивости обратных задач” // Докл. АН СССР, 1943. Т. 39, № 5. С. 195–198.
  7. М. М. Лаврентьев, “Об одной задаче для волнового уравнения” // Докл. АН СССР, 1964. Т. 157, № 3. С. 520–521.
  8. М. М. Лаврентьев, К. Г. Резницкая, В. Г. Якно, Одномерные обратные задачи математической физики. Новосибирск: Наука, Сибирск. отдел., 1982. 88 с.
  9. Иванов В. К., Васин В. В., Танана В. П., Теория линейных некорректных задач и ее приложения. М.: Наука, 1978. 206 с.
  10. А. И. Прилепко, Д. С. Ткаченко, “Свойства решений параболического уравнения и единственность решения обратной задачи об источнике с интегральным переопределением” // Ж. вычисл. матем. и матем. физ., 2003. Т. 43, № 4. С. 562–570.
  11. А. В. Баев, “Единственность решения обратной задачи для уравнения акустики и обратная спектральная задача” // Матем. заметки, 1990. Т. 47, № 2. С. 149–151.
  12. А. М. Денисов, Введение в теорию обратных задач. М.: МГУ, 1994. 285 с.
  13. А. И. Кожанов, “Нелинейные нагруженные уравнения и обратные задачи” // Ж. вычисл. матем. и матем. физ., 2004. Т. 44, № 4. С. 694–716.
  14. К. Б. Сабитов, Э. М. Сафин, “Обратная задача для уравнения смешанного парабологиперболического типа” // Матем. заметки, 2010. Т. 87, № 6. С. 907–918.
  15. К. Б. Сабитов, Н. В. Мартемьянова, “Нелокальная обратная задача для уравнения смешанного типа” // Изв. вузов. Матем., 2011. № 2. С. 71–85.
  16. К. Б. Сабитов, Н. В. Мартемьянова, “Обратная задача для уравнения эллиптикогиперболического типа с нелокальным граничным условием” // Сиб. матем. журн., 2012. Т. 53, № 3. С. 633–647.
  17. К. Б. Сабитов, И. А. Хаджи, “Краевая задача для уравнения Лаврентьева—Бицадзе с неизвестной правой частью” // Изв. вузов. Матем., 2011. № 5. С. 44–52.
  18. Г. Ю. Удалова, “Обратная задача для уравнения смешанного эллиптикогиперболического типа” // Вестн. СамГУ. Естественнонаучн. сер., 2010. № 4(78). С. 89–97.
  19. Г. Ю. Удалова, “Обратная задача для уравнения с оператором Лаврентьева—Бицадзе” // Доклады Адыгской (Черкесской) Международной академии наук, 2012. Т. 14, № 1. С. 98–111.
  20. Г. Ю. Удалова, “Краевая задача для уравнения Лаврентьева—Бицадзе с неизвестной правой частью” // Научные ведомости Белгородского гос. ун-та. Сер. Математика. Физика, 2012. Т. 26, № 5. С. 209–225.
  21. А. Я. Хинчин, Цепные дроби. М.: Наука, 1978. 112 с.
  22. В. И. Арнольд, “Малые знаменатели и проблемы устойчивости движения в классической и небесной механике” // УМН, 1963. Т. 18, № 6(114). С. 91–192.
  23. А. Зигмунд, Тригонометрические ряды. Т. 1. М.: Мир, 1965. 616 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».