Задача со смещением для уравнения Бицадзе—Лыкова


Цитировать

Аннотация

Рассмотрено уравнение Бицадзе—Лыкова. Для этого уравнения поставлена задача со смещением с операторами Кобера—Эрдейи и М. Сайго в краевом условии. Исследованы вопросы единственности (неединственности) решения задачи при различных функциях и значениях констант, входящих в краевые условия. Сформулирован и доказан ряд теорем.

Об авторах

Екатерина Юрьевна Арланова

Самарский государственный технический университет

Email: earlanova@gmail.com
(к.ф.-м.н.), старший преподаватель, каф. прикладной математики и информатики 443100, Россия, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Лыков А. В. Применение методов термодинамики необратимых процессов с исследованием тепло и массообмена // Инж.-физ. журн., 1965. Т. 9, № 3. С. 287–304.
  2. Бицадзе А. В. Уравнения смешанного типа. М.: Изд-во АН СССР, 1959. 134 с.
  3. Нахушев А. М. Уравнение математической биологии. М.: Высш. шк., 1995. 301 с.
  4. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  5. Нахушев А. М. Дробное исчисление и его применение. М.: Физматлит, 2003. 271 с.
  6. Жегалов В. И. Краевая задача для уравнения смешанного типа с граничными условиями на обеих характеристиках и с разрывами на переходной линии / В сб.: Краевые задачи теории аналитических функций / Учён. зап. Казан. гос. ун-та, Т. 122. Казань: Изд-во Казанского ун-та, 1962. С. 3–16.
  7. Нахушев А. М. Новая краевая задача для одного вырождающегося гиперболического уравнения // ДАН СССР, 1969. Т. 187, № 4. С. 736–739.
  8. Нахушев А. М. О некоторых краевых задачах для гиперболических уравнений и уравнений смешанного типа // Диффер. уравн., 1969. Т. 5, № 1. С. 44–59.
  9. Нахушев А. М. Задачи со смещением для уравнений в частных производных. М.: Наука, 2006. 287 с.
  10. Репин О. А., Кумыкова С. К. Нелокальная задача для уравнения Бицадзе–Лыкова // Изв. вузов. Матем., 2010. № 3. С. 28–35.
  11. Бицадзе А. В. Некоторые классы уравнений в частных производных. М.: Наука, 1981. 448 с.
  12. Трикоми Ф. О линейных уравнениях в частных производных второго порядка смешанного типа / пер. с итал. М.-Л.: Гостехиздат, 1947. 192 с.
  13. Килбас А. А. Интегральные уравнения: курс лекций. Минск: БГУ, 2005. 143 с.
  14. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher transcendental functions. Vol. I / ed. H. Bateman. New York – Toronto – London: McGraw-Hill Book Co, Inc., 1953. 302 pp.
  15. Нахушев А. М. Обратные задачи для вырождающихся уравнений и интегральные уравнения Вольтерры третьего рода // Диффер. уравн., 1974. Т. 10, № 1. С. 100–111

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).