Обобщённая стохастическая модель ползучести и длительной прочности балки в условиях чистого изгиба и её применение к оценке показателей надёжности


Цитировать

Аннотация

Предложена обобщённая стохастическая модель ползучести и длительной прочности балки в условиях чистого изгиба в терминах «обобщённая нагрузка», «обобщённое перемещение», «время». Балка рассматривается как единое целое (специфический образец). Установлена полная аналогия между кривыми ползучести одноосного образца при постоянном напряжении и обобщёнными кривыми ползучести балки в координатах «кривизна балки — время» при постоянном изгибающем моменте. На основе этой аналогии сформированы стохастические уравнения состояния балки. Разработана методика оценки показателей надёжности балки при изгибе в условиях ползучести по параметрическим критериям отказа в условиях существенного разброса данных. Приведены результаты расчётов и даны рекомендации по назначению ресурса.

Об авторах

Владимир Павлович Радченко

Самарский государственный технический университет

Email: radch@samgtu.ru
(д.ф.-м.н., проф.), зав. кафедрой, каф. прикладной математики и информатики 443100, Россия, Самара, ул. Молодогвардейская, 244

Мария Викторовна Шершнева

Самарский государственный технический университет

Email: mary-sofya@mail.ru
аспирант, каф. прикладной математики и информатики 443100, Россия, Самара, ул. Молодогвардейская, 244

Виталий Владимирович Цветков

Самарский государственный технический университет

Email: vi.v.tsvetkoff@mail.ru
студент, каф. прикладной математики и информатики 443100, Россия, Самара, ул. Молодогвардейская, 244

Список литературы

  1. Самарин Ю. П. О применении стохастических уравнений в теории ползучести материалов // Изв. АН СССР. МТТ, 1974. № 1. С. 88–94.
  2. Самарин Ю. П. Стохастические механические характеристики и надёжность конструкций с реологическими свойствами / В сб.: Ползучесть и длительная прочность конструкций. Куйбышев: КПтИ, 1986. С. 8–17.
  3. Радченко В. П. Прогнозирование ползучести и длительной прочности материалов на основе энергетического подхода в стохастической постановке // Пробл. прочности, 1992. № 2. С. 34–40.
  4. Шершнева М. В. Метод расчёта ресурса стержневых конструкций на основе энергетического варианта ползучести и длительной прочности // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 1(26). С. 141–149.
  5. Радченко В. П., Симонов А. В., Дудкин С. А. Стохастический вариант одномерной теории ползучести и длительной прочности // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2001. № 12. С. 73–84.
  6. Радченко В. П., Попов Н. Н. Стохастические характеристики полей напряжений и деформаций при установившейся ползучести стохастически неоднородной плоскости // Изв. вузов. Машиностроение, 2006. № 2. С. 3–11.
  7. Коваленко Л. В., Попов Н. Н., Радченко В. П. Решение плоской стохастической краевой задачи ползучести // ПММ, 2009. Т. 73, № 6. С. 1009–1016.
  8. Исуткина В. Н. Разработка аналитических методов решения стохастических краевых задач установившейся ползучести для плоского деформированного состояния: Автореф. дисс.. канд. физ.-мат. наук. Самара, 2007. 18 с.
  9. Попов Н. Н., Радченко В. П. Аналитическое решение стохастической краевой задачи установившейся ползучести для толстостенной трубы // ПММ, 2012. Т. 76, № 6. С. 1036–1044.
  10. Попов Н. Н., Радченко В. П. Нелинейная стохастическая задача ползучести неоднородной плоскости с учётом повреждённости материала // ПМТФ, 2007. Т. 48, № 2. С. 140–146.
  11. Радченко В. П., Шершнева М. В., Кубышкина С. Н. Оценка надёжности элементов конструкций в условиях ползучести на основе обобщённых стохастических моделей // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 3(28). С. 55–71.
  12. Самарин Ю. П. Метод исследования ползучести в конструкциях, основанный на концепции черного ящика / В сб.: Теоретико-экспериментальный метод исследования в конструкциях. Куйбышев: КуАИ, 1984. С. 3–27.
  13. Ерёмин Ю. А., Кайдалова Л. В., Радченко В. П. Исследование ползучести балок на основе аналогии структуры уравнения состояния материала и элементов конструкций // Машиноведение, 1983. № 2. С. 67–74.
  14. Радченко В. П., Ерёмин Ю. А. Реологическое деформирование и разрушение материалов и элементов конструкций. М.: Машиностроение-1, 2004. 264 с.
  15. Радченко В. П., Кубышкина С. Н. Математическая модель реологического деформирования и разрушения толстостенной трубы // Вестн. Сам. гос. техн. ун-та. Сер. Физ.мат. науки, 1998. № 6. С. 23–34.
  16. Соснин О. В., Горев Б. В., Никитенко А. Ф. Энергетический вариант теории ползучести. Новосибирск: Ин-т гидродинамики СО АН СССР, 1986. 95 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).