Properties of the integral curve and solving of non-autonomous system of ordinary differential equations


Cite item

Full Text

Abstract

In this paper, we consider non-autonomous system of ordinary differential equations. For a given non-autonomous system, we introduce the distribution probability-density function of representative points of the ensemble of Gibbs, possessing all the characteristic properties of the probability-density function, and satisfying the partial differential equation of the first order (Liouville equation). It is shown that such distribution probability-density function exists and represents the only solution of the Cauchy problem for the Liouville equation. We consider the properties of the integral curve and the solutions of non-autonomous system of ordinary differential equations. It is shown that under certain assumptions, the motion along trajectories of the system is the maximum of the distribution probability-density function, that is, if all the required terms are satisfied, an integral curve of non-autonomous system of ordinary differential equations at any given time is the most probable trajectory. For the linear non-autonomous system of ordinary differential equations, it is shown that the motion along the trajectories is carried out in the mode of distribution probability-density function and the estimate of its solutions is found.

About the authors

Gennady A Rudykh

Institute of Mathematics, Economics and Computer Science of Irkutsk State University

Email: rudykh@icc.ru
(д.ф.-м.н., проф.), профессор, каф. математического анализа и дифференциальных уравнений; Институт математики, экономики и информатики Иркутского государственного университета; Institute of Mathematics, Economics and Computer Science of Irkutsk State University

Daria J Kiselevich

Institute of Mathematics, Economics and Computer Science of Irkutsk State University

Email: dariakis@mail.ru
аспирант, каф. математического анализа и дифференциальных уравнений; Институт математики, экономики и информатики Иркутского государственного университета; Institute of Mathematics, Economics and Computer Science of Irkutsk State University

References

  1. Steeb W.-H. Generalized Liouville equation, entropy, and dynamic systems containing limit cycles // Physica A, 1979. Т. 95, № 1. С. 181-190.
  2. Красносельский М. А. Оператор сдвига по траекториям дифференциальных уравнений. М.: Наука, 1966. 331 с.
  3. Треногин В. А. Функциональный анализ. М.: Физматлит, 2002. 448 с.
  4. Зубов В. И. Динамика управляемых систем. М.: Высш. шк., 1982. 285 с.
  5. Nemytskiy V. V., Stepanov V. V. Qualitative Theory of Differential Equations. Moscow-Leningrad: Gostekhizdat, 1949. 550 p.
  6. Леонов Г. А. Странные аттракторы и классическая теория устойчивости движения. СПб.: СПб. ун-т, 2004. 144 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».