Atom-field entanglement for Jaynes–Cummings model with an intensity-depend coupling


Cite item

Abstract

We investigate the evolution of a quantum system described by the two-atom Jaynes–Cummings model with an intensity-dependent couplings by displaying the linear atomic entropy and the asymptotic behavior of state vector. The possibility of the system being initially in a pure disentangled state to revive into this state during the evolution process is shown. Conditions and times of disentanglement are derived.

About the authors

Eugene K Bashkirov

Samara State University

Email: bash@samsu.com
(Dr. Sci. (Phys. & Math.)), Professor, Dept. of General and Theoretical Physics 1, Academician Pavlov st., Samara, 443011, Russia

Eugenya V Grishina

Samara State University

Student, Dept. of General and Theoretical Physics 1, Academician Pavlov st., Samara, 443011, Russia

Elena Yu Sochkova

Samara State University

Email: sochkova-elena@mail.ru
Postgraduate Student, Dept. of General and Theoretical Physics. 1, Academician Pavlov st., Samara, 443011, Russia

References

  1. Nielsen M. A., Chuang I. L. Quantum Computation and Quantum Information. Cambridge, New York: Cambridge University Press, 2011. xxvi+676 pp.
  2. Schumacker D., Westmoreland M. D. Quantum Processes, Systems, and Information. Cambridge, New York: Cambridge University Press, 2010. xii+469 pp.
  3. Башкиров Е. К., Сочкова Е. Ю. Перепутывание в двухатомной модели c вырожденными рамановскими переходами // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. № 2(23). С. 135–141.
  4. Phoenix S. J. D., Knight P. L. Fluctuations and entropy in models of quantum optical resonance // Ann. Phys., 1988. Vol. 186, no. 2. Pp. 381–407.
  5. Gea-Banacloche J. Collapse and revival of the state vector in the Jaynes-Cummings model: an example of state preparation by a quantum apparatus // Phys. Rev. Lett., 1990. Vol. 65, no. 27. Pp. 3385–3388.
  6. Dung H. T., Huyen N. D. State evolution in the two-photon atom-field interaction with large initial fields // Phys. Rev. A, 1994. Vol. 49, no. 1. Pp. 473–480.
  7. Nasreen T., Zaheer K. Evolution of wave functions in the two-photon Jaynes–Cummings model: The generation of superpositions of coherent states // Phys. Rev. A, 1994. Vol. 49, no. 1. Pp. 616–619.
  8. Kudryavtsev I. K., Lambrecht A., Moya-Cess H., Knight P. L. Cooperativity and entanglement of atom-field states // J. Mod. Opt., 1993. Vol. 40, no. 8. Pp. 1605–1630.
  9. Dung H. T., Huyen N. D. Two atom-single mode radiation field interaction. State evolution, level occupation probabilities and emission spectra // J. Mod. Opt., 1994. Vol. 41, no. 3. Pp. 453–469.
  10. Bashkirov E. K., Rusakova M. S. Atom-field entanglement in two-atom Jaynes–Cummings model with nondegenerate two-photon transitions // Opt. Comm., 2008. Vol. 281, no. 17. Pp. 4380–4386.
  11. Bashkirov E. K. Entanglement in degenerate two-photon Tavis–Cummings model // Phys. Scr., 2010. Vol. 82, no. 1, 015401.
  12. Bashkirov E. K., Rusakova M. S. Entanglement for two-atom Tavis–Cummings model with degenerate two-photon transitions in the presence of the Stark shift // Optik, 2012. Vol. 123, no. 19. Pp. 1694–1699.
  13. Haroche S., Raimond J.-M. Exploring the Quantum. Atoms, Cavities and Photons. Cambridge, New York: Cambridge University Press, 2010. x+605 pp.
  14. Stute A., Casabone B., Schindler P., Monz T., Schmidt P. O., Brandstätter B., Northup T. E., Blatt R. Tunable ion-photon entanglement in an optical cavity // Nature, 2012. Vol. 485, no. 7399. Pp. 482–485, arXiv: 1301.0275 [quant-ph].
  15. Li L., Dudin Y. O., Kuzmich A. Entanglement between light and an optical atomic excitation // Nature, 2013. Vol. 498, no. 7455. Pp. 466–469.
  16. Rauschenbeutel A., Nogues G., Osnaghi S., Bertet P., Brune M., Raimond J.-M., Haroche S. Step-by-Step Engineered Multiparticle Entanglement // Science, 2000. Vol. 288, no. 5473. Pp. 2024–2028.
  17. Blinov B. B., Moehring D. L., Duan L.-M., Monroe C. Observation of entanglement between a single trapped atom and a single photon // Nature, 2004. Vol. 428, no. 6979. Pp. 153–157.
  18. Togan E., Chu Y., Trifonov A. S., Jiang L., Maze J., Childress L., Dutt M. V. G., Sørensen A. S., Hemmer P. R., Zibrov A. S., Lukin M. D. Quantum entanglement between an optical photon and a solid-state spin qubit // Nature, 2010. Vol. 466, no. 7307. Pp. 730–734.
  19. Fink J. M., Göppl M., Baur M., Bianchetti R., Leek P. J., Blais A., Wallraff A. Climbing the Jaynes–Cummings ladder and observing its n nonlinearity in a cavity QED system // Nature, 2008. Vol. 454, no. 7202. Pp. 315–318, arXiv: 0902.1827 [cond-mat.mes-hall].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).