The influence functional method to the description of the dynamics of quantum systems interacting with the laser radiation


Cite item

Abstract

The description of interacting multilevel quantum system and quantum electromagnetic field in terms of statistical density matrix is considered in path integral approach. The statistical operator and probability transitions of quantum system are represented as mean of electromagnetic field influence functional. The influence functionals are defined for specific models of electromagnetic field. The explicit form for singleand multimode electromagnetic field is concretized in cases when initial state of the field is represented by vacuum and pure coherent.

About the authors

Alexander A Biryukov

Samara State University

Email: birykov@samsu.ru
(Ph. D. (Phys. & Math.)), Professor, Dept. of General and Theoretical Physics 1, Academician Pavlov st., Samara, 443011, Russia

Mark A Shleenkov

Samara State University

Email: shleenkov@list.ru
Postgraduate Student, Dept. of General and Theoretical Physics 1, Academician Pavlov st., Samara, 443011, Russia

References

  1. Govorov A. O. Semiconductor-metal nanoparticle molecules in a magnetic field: Spinplasmon and exciton-plasmon interactions // Phys. Rev. B, 2010. Vol. 82, no. 15, 155322. 11 pp.
  2. Wellers Ch., Borodin A., Vasilyev S., Offenberg D., S. Schiller Resonant IR multiphoton dissociation spectroscopy of a trapped and sympathetically cooled biomolecular ion species // Phys. Chem. Chem. Phys., 2011. Vol. 13, no. 42. Pp. 18799–18809.
  3. Richter M., Amusia M. Ya., Bobashev S. V., Feigl T., Juranić P. N., Martins M., Sorokin A. A., Tiedtke K. Extreme Ultraviolet Laser Excites Atomic Giant Resonance // Phys. Rev. Let., 2009. Vol. 102, no. 16, 163002. 4 pp.
  4. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. New York: McGrawHill, 1965. 371+xii pp.
  5. Albeverio S., Cattaneo L., Mazzucchi S., Di Persio L. A rigorous approach to the Feynman-Vernon influence functional and its applications. I // J. Math. Phys., 2007. Vol. 48, no. 10, 102109. 22 pp.
  6. Jin J., Tu M. W. Y., Zhang W.-M., Yan Y. Non-equilibrium quantum theory for nanodevices based on the Feynman–Vernon influence functional // New J. Phys., 2010. Vol. 12, 083013, arXiv: 0910.1675 [cond-mat.mes-hall].
  7. Scully M. O., Zubairy M. S. Quantum Optics. Cambridge: Cambridge Univ. Press, 1997.
  8. Вергелес С. Н. Лекции по квантовой электродинамике. М.: Физматлит, 2008. 248 с.
  9. Hillery M., Zubairy M. S. Path-integral approach to problems in quantum optics // Phys.Rev.A, 1982. Vol. 26, no 1. Pp. 451–460.
  10. Борняков В. Г., Поликарпов М. И. Компьютерные методы вычислений в решеточной квантовой хромодинамике // Теоретическая физика, 2010. Т. 11. С. 64–85.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).