Representation of Friedmann equation solution in form of generalized Dirichlet series


Cite item

Abstract

The cosmological Friedmann equation for the Universe, filled by scalar field with the quadratic potential, is reduced to the system of two first-order equations, one having the separable variables. The boundary-value problem with data at infinity is formulated for the second equation. The solution of this problem is represented in form of generalized Dirichlet series. The existence of classical solution in this form at the neighborhood of infinity is proved.

About the authors

Eduard A Kuryanovich

Steklov Mathematical Institute, Russian Academy of Sciences

Email: kurianovich@mail.ru
Listener, Research and Education Center 8, Gubkina st., Moscow, 119991, Russia

References

  1. Mukhanov V. Physical foundations of cosmology. Cambridge: Cambridge University Press, 2005. xx+421 pp.
  2. Yurov A. V. Yurov V. A. Friedman versus Abel equations: A connection unraveled // J. Math. Phys., 2010. Vol. 51, no. 8, 082503. 17 pp., arXiv: 0809.1216 [hep-th].
  3. Леонтьев А. Ф. Представление функций обобщенными рядами Дирихле // УМН, 1969. Т. 24, № 2(146). С. 97–164.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).