О двух специальных функциях, обобщающих функцию типа Миттаг-Леффлера, их свойствах и применении


Цитировать

Полный текст

Аннотация

Рассмотрены две специальные функции, связанные с функциями типа Миттаг-Леффлера. Первая из них является модификацией обобщённой функции типа Миттаг-Леффлера, введённой А. А. Килбасом и М. Сайго, вторая - специальным случаем первой. Указана связь этих функций с некоторыми элементарными и специальными функциями и их роль в решении интегральных уравнений Вольтерры с ядрами Абеля. Приведены формулы дробного интегрирования и дифференцирования в смысле Римана-Лиувилля и Кобера этих функций. Отмечена их роль в решении задач типа Коши для линейных дифференциальных уравнений с производными Римана-Лиувилля и Кобера.

Об авторах

Евгений Николаевич Огородников

Самарский государственный технический университет

Email: eugen.ogo@gmail.com
(к.ф.-м.н., доц.), доцент, каф. прикладной математики и информатики; Самарский государственный технический университет

Список литературы

  1. Kilbas A. A., Saigo M. On solution of integral equation of Abel-Volterra type // Diff. Integr. Equat., 1995. Vol. 8, no. 5. Pp. 547-576.
  2. Kilbas A. A., Saigo M. On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations // Integral Transform. Spec. Funct., 1996. Vol. 4, no. 4. Pp. 335-370.
  3. Gorenflo R., Kilbas A. A., Rogozin S. V. On the generalized Mittag-Leffler type function // Integral Transform. Spec. Funct., 1998. Vol. 7, no. 3-4. Pp. 215-224.
  4. Горенфло Р., Килбас А. А., Рогозин С. В. О свойствах обобщённой функции Миттаг-Леффлера // Докл. Нац. акад. наук Беларуси, 1998. Т. 42, № 5. С. 34-39.
  5. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations / North-Holland Mathematics Studies, 204; ed. J. Van Mill. Amsterdam: Elsevier, 2006. Pp. 523.
  6. Огородников Е. Н. Нелокальные краевые задачи для одного модельного параболо-гиперболического уравнения с дробной производной / В сб.: Труды четвёртой Всероссийской научной конференции с международным участием (29-31 мая 2007 г.). Часть 3: Дифференциальные уравнения и краевые задачи / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2007. С. 147-152.
  7. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher transcendental functions. Vol. I / ed. H. Bateman. New York - Toronto - London: McGraw-Hill Book Co, Inc., 1953. 302 pp.
  8. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G. Higher transcendental functions. Vol. III / ed. H. Bateman. New York - Toronto - London: McGraw-Hill Book Co, Inc., 1955. 292 pp.
  9. Джрбашян М. М. Интегральные преобразования и представления функций в комплексной области. М.: Наука, 1966. 672 с.
  10. Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications / Mathematics in Science and Engineering, 198. San Diego: Academic Press, 1999. 340 pp.
  11. Огородников Е. Н. О задаче Коши для модельных дифференциальных уравнений дробных осцилляторов / В сб.: Современные проблемы вычисл. мат. и мат. физики. М.: ВМК МГУ; Макс Пресс, 2009. С. 229-231.
  12. Огородников Е. Н., Яшагин Н. С. Некоторые специальные функции в решении задачи Коши для одного дробного осцилляционного уравнения // Вестн. Сам. гос. техн. унта. Сер. Физ.-мат. науки, 2009. № 1(18). С. 276-279.
  13. Огородников Е. Н. О двух специальных функциях, обобщающих функцию типа Миттаг-Леффлера, их свойства и применение / В сб.: Вторая международная конференция «Математическая физика и её приложения»: Материалы международной конф. (Самара, 29 августа - 4 сентября, 2010 г.). Самара: Книга, 2010. С. 248-249.
  14. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  15. Нахушев А. М. Обратные задачи для вырождающихся уравнений и интегральные уравнения Вольтерра третьего рода // Дифференц. уравнения, 1974. Т. 1, № 10. С. 100-111.
  16. Нахушев А. М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.
  17. Tricomi F. Integral Equations / Pure and Applied Mathematics, 5. New York: Interscience Publishers, 1957. Pp. 246
  18. Огородников Е. Н. О некоторых краевых задачах для системы уравнений Бицадзе-Лыкова с инволютивной матрицей / В сб.: Труды десятой межвузовской научной конференции. Часть 3: Дифференциальные уравнения и краевые задачи / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2000. С. 119-126.
  19. Огородников Е. Н. Корректность задачи Коши-Гурса для системы вырождающихся нагруженных гиперболических уравнений в некоторых специальных случаях и ее равносильность задачам с нелокальными краевыми условиями // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2004. № 26. С. 26-38.
  20. Огородников Е. Н., Арланова Е. Ю. Некоторые нелокальные аналоги задачи Коши-Гурса и существенно нелокальные краевые задачи для системы уравнений Бицадзе-Лыкова в специальных случаях // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2005. № 34. С. 24-39.
  21. Огородников Е. Н., Яшагин Н. С. О некоторых свойствах операторов с функциями типа Миттаг-Леффлера в ядрах / В сб.: Труды шестой Всероссийской научной конференции с международным участием (1-4 июня 2009 г.). Часть 3: Дифференциальные уравнения и краевые задачи / Матем. моделирование и краев. задачи. Самара: СамГТУ, 2009. С. 181-188.
  22. Огородников Е. Н., Яшагин Н. С. Постановка и решение задач типа Коши для дифференциальных уравнений второго порядка с дробными производными Римана-Лиувилля // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 1(20). С. 24-36.
  23. Колмогоров А. Н., Фомин А. Н. Элементы теории функции и функционального анализа. М.: Наука, 1976. 543 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2012

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».