Boltzmann equation and H-theorem in the functional formulation of classical mechanics


Cite item

Full Text

Abstract

We propose a procedure for obtaining the Boltzmann equation from the Liouville equation in a non-thermodynamic limit. It is based on the BBGKY hierarchy, the functional formulation of classical mechanics, and the distinguishing between two scales of space-time, i.e., macro- and microscale. According to the functional approach to mechanics, a state of a system of particles is formed from the measurements, which have errors. Hence, one can speak about accuracy of the initial probability density function in the Liouville equation. Let's assume that our measuring instruments can observe the variations of physical values only on the macroscale, which is much greater than the characteristic interaction radius (microscale). Then the corresponfing initial density function cannot be used as initial data for the Liouville equation, because the last one is a description of the microscopic dynamics, and the particle interaction potential (with the characteristic interaction radius) is contained in it explicitly. Nevertheless, for a macroscopic initial density function we can obtain the Boltzmann equation using the BBGKY hierarchy, if we assume that the initial data for the microscopic density functions are assigned by the macroscopic one. The H-theorem (entropy growth) is valid for the obtained equation.

About the authors

Anton S Trushechkin

Steklov Mathematical Institute, Russian Academy of SciencesNational Research Nuclear University "MEPhI"

Email: trushechkin@mi.ras.ru
(к.ф.-м.н.), научный сотрудник, отд. математической физики; доцент, каф. системного анализа; Математический институт им. В. А. Стеклова РАННациональный исследовательский ядерный университет МИФИ; Steklov Mathematical Institute, Russian Academy of SciencesNational Research Nuclear University "MEPhI"

References

  1. Козлов В. В. Тепловое равновесие по Гиббсу и Пуанкаре. М., Ижевск: Институт компьютерных исследований, 2002. 320 с.
  2. Боголюбов Н. Н. Проблемы динамической теории в статистической физике. М., Л.: Гостехиздат, 1946. 119 с.
  3. Боголюбов Н. Н. Кинетические уравнения и функции Грина в статистической механике / В сб.: Собрание научных трудов в двенадцати томах. Т. V. М.: Наука, 2005. С. 616- 638.
  4. Волович И. В. Проблема необратимости и функциональная формулировка классической механики // Вестн. Сам. гос. ун-та. Естественнонаучн. сер., 2008. № 8/1(67). С. 35-55, arXiv: 0907.2445 [cond-mat.stat-mech].
  5. Волович И. В. Уравнения Боголюбова и функциональная механика // ТМФ, 2010. Т. 164, № 3. С. 354-362
  6. Trushechkin A. S., Volovich I. V. Functional classical mechanics and rational numbers // p- Adic Numbers, Ultrametric Analysis, and Applications, 2009. Т. 1, № 4. С. 361-367, arXiv: 0910.1502 [math-ph].
  7. Трушечкин А. С. Необратимость и роль измерительного прибора в функциональной формулировке классической механики // ТМФ, 2010. Т. 164, № 3. С. 435-440
  8. Лифшиц Е. М., Питаевский Л. П. Физическая кинетика. М.: Физматлит, 2002. 536 с.
  9. Wigner E. The Unreasonable Effectiveness of Mathematics in the Natural Sciences // Commun. Pure Appl. Math., 1960. Vol. 13, no. 1. Pp. 1-14

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».