Stability and convergence of the locally one-dimensional scheme A. A. Samarskii, approximating the multidimensional integro-differential equation of convection-diffusion with inhomogeneous boundary conditions of the first kind
- Authors: Beshtokova Z.V.1
-
Affiliations:
- Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center of RAS
- Issue: Vol 27, No 3 (2023)
- Pages: 407-426
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/310968
- DOI: https://doi.org/10.14498/vsgtu2014
- ID: 310968
Cite item
Full Text
Abstract
The first initial-boundary value problem for a multidimensional (in space variables) integro-differential equation of convection-diffusion is studied. For an approximate solution of the problem a locally one-dimensional scheme by A. A. Samarskii with order of approximation O(h2+τ) is proposed. The study of the uniqueness and stability of the solution is carried out using the method of energy inequalities. A priori estimates for the solution of a locally one-dimensional difference scheme are obtained, which imply the uniqueness of the solution, the continuous and uniform dependence of the solution on the input data, and the convergence of the solution of the scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme. For a two-dimensional problem, a numerical solution algorithm is constructed, numerical calculations of test cases are carried out, illustrating the theoretical results obtained in the study.
Full Text
##article.viewOnOriginalSite##About the authors
Zaryana V. Beshtokova
Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center of RAS
Author for correspondence.
Email: zarabaeva@yandex.ru
ORCID iD: 0000-0001-8020-4406
https://orcid.org/0000-0001-8020-4406
Junior Researcher, Dept. of Computational Methods
Russian Federation, 360000, Nalchik, Shortanov str., 89aReferences
- Samarskii A. A., Vabishchevich P. N. Chislennye metody resheniia zadach konvektsii-diffuzii [Numerical Methods for Solving Convection-Diffusion Problems]. Moscow, Editorial URSS, 2015, 246 pp. (In Russian). EDN: QJVBYN.
- Douglas J., Rachford H. H. On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 1956, vol. 82, no. 2, pp. 421–439. DOI: https://doi.org/10.2307/1993056.
- Peaceman D. W., Rachford H. H. The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math., 1955, vol. 3, no. 1, pp. 28–41. DOI: https://doi.org/10.1137/0103003.
- Yanenko N. N. Metod drobnykh shagov resheniia mnogomernykh zadach matematicheskoi fiziki [The Method of Fractional Steps for Solving Multidimensional Problems in Mathematical Physics]. Nauka. Sibirsk. Otdel., Novosibirsk, 1967, 196 pp. (In Russian)
- Samarskii A. A. On an economical difference method for the solution of a multidimensional parabolic equation in an arbitrary region, USSR Comput. Math. Math. Phys., 1963, vol. 2, no. 5, pp. 894–926. EDN: XKSSEZ. DOI: https://doi.org/10.1016/0041-5553(63)90504-4.
- Samarskii A. A. Local one dimensional difference schemes on non-uniform nets, USSR Comput. Math. Math. Phys., 1963, vol. 3, no. 3, pp. 572–619. DOI: https://doi.org/10.1016/0041-5553(63)90290-8.
- Marchuk G. I. Metody rasshchepleniia [Decomposition Methods]. Moscow, Nauka, 1988, 264 pp. (In Russian)
- D’yakonov E. G. Difference schemes with a splitting operator for nonstationary equations, Dokl. Sov. Math., 1962, vol. 3, no. 1, pp. 645–648.
- Fryazinov I. V. Difference approximation of the boundary conditions for the third boundary value problem, USSR Comput. Math. Math. Phys., 1964, vol. 4, no. 6, pp. 180–188. DOI: https://doi.org/10.1016/0041-5553(64)90090-4.
- Fryazinov I. V. Economic schemes for increasing the order of accuracy when solving multidimensional parabolic equations, USSR Comput. Math. Math. Phys., 1969, vol. 9, no. 6, pp. 104–117. DOI: https://doi.org/10.1016/0041-5553(69)90128-1.
- Fryazinov I. V. Economic schemes for the equation of heat conduction with a boundary condition of the third kind, USSR Comput. Math. Math. Phys., 1972, vol. 12, no. 3, pp. 53–70. DOI: https://doi.org/10.1016/0041-5553(72)90034-1.
- Nakhusheva F. M., Vodakhova V. A., Kudaeva F. Kh., Abaeva Z. V. Locally-onedimensional difference scheme for the fractional-order diffusion equation with lumped heat capacity, Modern Problems of Science and Education, 2015, no. 2, 763 (In Russian). EDN: UHXHYD.
- Beshtokova Z. V., Shkhanukov–Lafishev M. Kh. Locally one-dimensional difference scheme for the third boundary value problem for a parabolic equation of the general form with a nonlocal source, Differ. Equat., 2018, vol. 54, no. 7, pp. 870–880. EDN: VBIHHF. DOI: https://doi.org/10.1134/S0012266118070042.
- Beshtokova Z. V. Locally one-dimensional difference scheme for a nonlocal boundary value problem for a parabolic equation in a multidimensional domain, Differ. Equat., 2020, vol. 56, no. 3, pp. 354–368. EDN: GHNGTY. DOI: https://doi.org/10.1134/S0012266120030088.
- Beshtokova Z. V. Numerical method for solving an initial-boundary value problem for a multidimensional loaded parabolic equation of a general form with conditions of the third kind, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2022, vol. 26, no. 1, pp. 7–35 (In Russian). EDN: BIBCLS. DOI: https://doi.org/10.14498/vsgtu1908.
- Samarskii A. A. Teoriia raznostnykh skhem [Theory of Difference Schemes]. Moscow, Nauka, 1983, 616 pp. (In Russian)
- Samarskii A. A., Gulin A. B. Ustoichivost’ raznostnykh skhem [Stability of Difference Schemes]. Moscow, Nauka, 1973, 415 pp. (In Russian)
Supplementary files
