Description of the spectrum of one fourth-order operator matrix
- Authors: Rasulov T.K.1, Latipov H.M.1
-
Affiliations:
- Bukhara State University
- Issue: Vol 27, No 3 (2023)
- Pages: 427-445
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/310969
- DOI: https://doi.org/10.14498/vsgtu2003
- ID: 310969
Cite item
Full Text
Abstract
An operator matrix A of fourth-order is considered. This operator corresponds to the Hamiltonian of a system with non conserved number and at most four particles on a lattice. It is shown that the operator matrix A is unitarily equivalent to the diagonal matrix, the diagonal elements of which are operator matrices of fourth-order. The location of the essential spectrum of the operator A is described, that is, two-particle, three-particle and four-particle branches of the essential spectrum of the operator A are singled out. It is established that the essential spectrum of the operator matrix A consists of the union of closed intervals whose number is not over 14. A Fredholm determinant is constructed such that its set of zeros and the discrete spectrum of the operator matrix A coincide, moreover, it was shown that the number of simple eigenvalues of the operator matrix A lying outside the essential spectrum does not exceed 16.
Full Text
##article.viewOnOriginalSite##About the authors
Tulkin Kh. Rasulov
Bukhara State University
Author for correspondence.
Email: rth@mail.ru
ORCID iD: 0000-0002-2868-4390
Dr. Sci. (Phys. & Math.), Professor, Vice-Rector for Research and Innovation
Uzbekistan, 705018, Bukhara, Muhammad Ikbol st., 11Hakimboy M. Latipov
Bukhara State University
Email: h.m.latipov@buxdu.uz
ORCID iD: 0000-0002-4806-0155
Assistant Lecturer, Dept. of Mathematical Analysis
Uzbekistan, 705018, Bukhara, Muhammad Ikbol st., 11References
- Tretter C. Spectral Theory of Block Operator Matrices and Applications. London, Imperial College Press, 2008, xxxi+264 pp.
- Mogilner A. I. Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: Problems and results, In: Many particle Hamiltonians: Spectra and Scattering, Advances in Soviet Mathematics, vol. 5. Providence, RI, Am. Math. Soc., 1991, pp. 139–194.
- Friedrichs K. O. Perturbation of Spectra in Hilbert Space, Lectures in Applied Mathematics, vol. 3. Providence, RI, Am. Math. Soc., 1965, xii+178 pp.
- Malyshev V. A., Minlos R. A. Linear Infinite-Particle Operators, Translations of Mathematical Monographs, vol. 143. Providence, RI, Am. Math. Soc., 1995, viii+298 pp.
- Thaller B. The Dirac Equation, Texts and Monographs in Physics. Berlin, Springer-Verlag, 1991, xvii+357 pp.
- Lifschitz A. E. Magnetohydrodynamics and Spectral Theory, Developments in Electromagnetic Theory and Applications, vol. 4. Kluwer Academic Publ., Dordrecht, 1989, xii+446 pp.
- Faddeev L. D., Merkuriev S. P. Quantum Scattering Theory for Several Particle Systems, Mathematical Physics and Applied Mathematics, vol. 11. Kluwer Academic Publ., 1993, xiii+404 pp.
- Cycon H. L., Froese R. G., Kirsch W., Simon B. Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry, Springer Study edition. Texts and Monographs in Physics. Berlin, Springer-Verlag, 1987, ix+319 pp.
- Hunziker W. On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta, 1966, vol. 39, pp. 451–462.
- van Winter C. Theory of Finite Systems of Particles. I: The Green Function, Mat.-Fys. Skr., Danske Vid. Selsk. 2, No. 8, 1964, 60 pp.
- Zhislin G. M. A study of the spectrum of the Schrödinger operator for a system of several particles, Tr. Mosk. Mat. Obs., 9, 1960, pp. 81–120 (In Russian).
- Muminov M. É. A Hunziker–van Winter–Zhislin theorem for a four-particle lattice Schrödinger operator, Theoret. and Math. Phys., 2006, vol. 148, no. 3, pp. 1236–1250. EDN: XLLPVN. DOI: https://doi.org/10.1007/s11232-006-0114-5.
- Lakaev S. N., Rasulov T. K. A model in the theory of perturbations of the essential spectrum of multiparticle operators, Math. Notes, 2003, vol. 73, no. 4, pp. 521–528. EDN: XJVQYB. DOI: https://doi.org/10.1023/A:1023207220878.
- Albeverio S., Lakaev S. N., Rasulov T. H. On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics, J. Stat. Phys., 2007, vol. 127, no. 2, pp. 191–220, arXiv: math-ph/0508028. EDN: LXQYHX. DOI: https://doi.org/10.1007/s10955-006-9240-6.
- Rasulov T. K. On the structure of the essential spectrum of a model many-body Hamiltonian, Math. Notes, 2008, vol. 83, no. 1, pp. 80–87. EDN: LKYTYL. DOI: https://doi.org/10.1134/S0001434608010100.
- Rasulov T. H., Muminov M. E., Hasanov M. On the spectrum of a model operator in Fock space, Methods Funct. Anal. Topol., 2009, vol. 15, no. 4, pp. 369–383, arXiv: 0805.1284 [math-ph].
- Rasulov T. H. Investigations of the essential spectrum of a Hamiltonian in Fock space, Appl. Math. Inform. Sci., 2010, vol. 4, no. 3, pp. 395–412. EDN: SQGWHZ.
- Muminov M., Neidhardt H., Rasulov T. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case, J. Math. Phys., 2015, vol. 56, 053507, arXiv: 1410.4763 [math-ph]. EDN: URDADB. DOI: https://doi.org/10.1063/1.4921169.
- Rasulov T. K. Branches of the essential spectrum of the lattice spin-boson model with at most two photons, Theoret. and Math. Phys., 2016, vol. 186, no. 2, pp. 251–267. EDN: WPRRHL. DOI: https://doi.org/10.1134/S0040577916020094.
- Spohn H. Ground state(s) of the spin-boson hamiltonian, Commun. Math. Phys., 1989, vol. 123, no. 2, pp. 277–304. DOI: https://doi.org/10.1007/BF01238859.
- Hübner M., Spohn H. Spectral properties of the spin-boson Hamiltonian, Ann. Inst. Henri Poincaré, Phys. Théor., 1995, vol. 62, no. 3, pp. 289–323.
- Zhukov Yu. V., Minlos R. A. Spectrum and scattering in a “spin-boson” model with not more than three photons, Theoret. and Math. Phys., 1995, vol. 103, no. 1, pp. 398–411. DOI: https://doi.org/10.1007/BF02069784.
- Minlos R. A., Spohn H. The three-body problem in radioactive decay: The case of one atom and at most two photons, In: Topics in Statistical and Theoretical Physics, American Mathematical Society Translations, Ser. 2, 177. Providence, RI, Am. Math. Soc., 1996, pp. 159–193. DOI: https://doi.org/10.1090/trans2/177/09.
- Feynman R. P. Statistical Mechanics. A Set of Lectures, Advanced Book Classics. Reading, MA, Perseus Books, 1998, xiv+354 pp.
- Reed M., Simon B. Methods of Modern Mathematical Physics, vol. 4, Analysis of Operators. New York, Academic Press, 1978, xv+396 pp.
- Gohberg I. C., Kre˘ın M. G. Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Translations of Mathematical Monographs, vol. 18. Providence, RI, Am. Math. Soc., 1969, xv+378 pp. DOI: https://doi.org/10.1090/mmono/018.
Supplementary files
