Inhomogeneous Couette flows for a two-layer fluid
- Authors: Burmasheva N.V.1,2, Larina E.A.3,4, Prosviryakov E.Y.1,2,5
-
Affiliations:
- Institute of Engineering Science, Urals Branch, Russian Academy of Sciences
- Ural Federal University named after the First President of Russia B. N. Yeltsin
- Ural Federal University named after the first President of Russia B. N. Yeltsin
- Institute of Engineering Science, Ural Branch of RAS
- Udmurt Federal Research Center, Ural Branch of RAS
- Issue: Vol 27, No 3 (2023)
- Pages: 530-543
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journal-vniispk.ru/1991-8615/article/view/310983
- DOI: https://doi.org/10.14498/vsgtu1968
- ID: 310983
Cite item
Full Text
Abstract
The paper presents a new exact solution to the Navier–Stokes equations which describes a steady shearing isothermal flow of an incompressible two-layer fluid stratified in terms of density and/or viscosity, the vertical velocity of the fluid being zero. This exact solution belongs to the class of functions linear in terms of spatial coordinates, and it is an extension of the classical Couette flow in an extended horizontal layer to the case of non-one-dimensional non-uniform flows. The solution constructed for each layer is studied for the ability to describe the appearance of stagnation points in the velocity field and the generation of counterflows. It has been found that the flow of a two-layer fluid is stratified into two zones where the fluid flows in counter directions. It is also shown that the tangential stress tensor components can change their sign.
Full Text
##article.viewOnOriginalSite##About the authors
Natalya V. Burmasheva
Institute of Engineering Science, Urals Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin
Author for correspondence.
Email: nat_burm@mail.ru
ORCID iD: 0000-0003-4711-1894
SPIN-code: 7927-5530
Scopus Author ID: 57193346922
ResearcherId: E-3908-2016
http://www.mathnet.ru/person52636
Senior Researcher, Sect. of Nonlinear Vortex Hydrodynamics; Cand. Tech. Sci., Associate Professor, Dept. of Information Technology and Automation
Russian Federation, 620049, Ekaterinburg, Komsomolskaya st., 34; 620002, Ekaterinburg, Mira st., 19Ekaterina A. Larina
Ural Federal University named after the first President of Russia B. N. Yeltsin; Institute of Engineering Science, Ural Branch of RAS
Email: larinakatia@yandex.ru
ORCID iD: 0009-0000-7883-0803
Assistant, Dept. of Information Technology and Automation; Engineer, Sect. of Nonlinear Vortex Hydrodynamics
Russian Federation, 620002, Ekaterinburg, Mira st., 19; 620049, Ekaterinburg, Komsomolskaya st., 34Evgeniy Yu. Prosviryakov
Institute of Engineering Science, Urals Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin; Udmurt Federal Research Center, Ural Branch of RAS
Email: evgen_pros@mail.ru
ORCID iD: 0000-0002-2349-7801
SPIN-code: 3880-5690
Scopus Author ID: 57189461740
ResearcherId: E-6254-2016
http://www.mathnet.ru/person41426
Head of Sector, Sect. of Nonlinear Vortex Hydrodynamics; Dr. Phys. & Math. Sci., Professor, Dept. of Information Technology and Automation; Leading Researcher, Lab. of Physical and Chemical Mechanics
Russian Federation, 620049, Ekaterinburg, Komsomolskaya st., 34; 620002, Ekaterinburg, Mira st., 19; 426067, Izhevsk, T. Baramzina st., 34References
- Couette M. Études sur le frottement des liquids, Ann. de Chim. et Phys. (6), 1890, vol. 21, pp. 433–510 (In French).
- Drazin P., Riley N. The Navier–Stokes equations: A classification of flows and exact solutions, London Mathematical Society Lecture Note Serie, vol. 334. Cambridge, Cambridge Univ. Press, 2006, x+196 pp. DOI: https://doi.org/10.1017/CBO9780511526459.
- Aristov S. N., Knyazev D. V., Polyanin A. D. Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 642–662. EDN: LPGJRJ. DOI: https://doi.org/10.1134/S0040579509050066.
- Taylor G. I. Stability of a viscous liquid contained between two rotating cylinders, J. Phil. Trans. Royal Society A, 1923, vol. 102, no. 718, pp. 541–542. DOI: https://doi.org/10.1098/rsta.1923.0013.
- Shlikhting G. Teoriia pogranichnogo sloia [Boundary-Layer Theory]. Moscow, Nauka, 1974, 712 pp. (In Russian)
- Ilin K. I., Morgulis A. B. Critical curves for the Couette–Taylor throughflow, Izv. Vuzov. Severo-Kavkazskii Reg. Natural Sci., 2019, vol. 1, pp. 10–16 (In Russian). EDN: ZBZEWT.
- Devisilov V. A., Sharay E. Yu. Hydrodynamic filtration, Safety in Technosphere, 2015, vol. 4, no. 3, pp. 68–80 (In Russian). EDN: TZKMCL. DOI: https://doi.org/10.12737/11885.
- Lebiga V. A., Zinoviev V. N., Pak A. Yu., Zharov I. R. The circular gap Couette flow modeling, Vestn. Novosib. Gos. Univ. Ser. Fizika, 2016, vol. 11, no. 4, pp. 52–60 (In Russian). EDN: XRUKWH.
- Astaf’ev N. M. Structures formed in a rotating spherical layer under the influence of conditions simulating global heat fluxes in the atmosphere, Sovr. Probl. DZZ Kosm., 2006, vol. 3, no. 1, pp. 245–256 (In Russian). EDN: NDPOWR.
- Belyaev Yu. N., Monakhov A. A., Yavorskaya I. M. Stability of spherical Couette flow in thick layers when the inner sphere revolves, Fluid. Dyn., 1978, vol. 13, no. 2, pp. 162–168. DOI: https://doi.org/10.1007/BF01091664.
- Puhnachev V. V., Puhnacheva T. P. The Couette problem for a Kelvin–Voigt medium, J. Math. Sci., 2012, vol. 186, no. 3, pp. 495–510. EDN: RGHYXH. DOI: https://doi.org/10.1007/s10958-012-1003-0.
- Skul’skiy O. I., Aristov S. N. Mekhanika anomal’no viazkikh zhidkostei [Mechanics of Abnormally Viscous Fluids]. Moscow, Izhevsk, R&C Dynamics, 2003, 156 pp. (In Russian). EDN: OWGAFL.
- Prosviryakov E. Yu. Exact solutions for three-dimensional potential and vorticity Couette flows of an incompressible viscous fluid, Vestnik natsional’nogo issledovatel’skogo yadernogo universiteta "MIFI", 2015, vol. 4, no. 6, pp. 501–506. EDN: VLRBSB. DOI: https://doi.org/10.1134/S2304487X15060127.
- Aristov S. N., Prosviryakov E. Yu. On laminar flows of planar free convection, Nelin. Dinam., 2013, vol. 9, no. 4, pp. 651–657 (In Russian). EDN: SAHAZJ.
- Aristov S. N., Prosviryakov E. Yu. Inhomogeneous Couette flow, Nelin. Dinam., 2014, vol. 10, no. 2, pp. 177–182 (In Russian). EDN: SHVJGX.
- Zubarev N. M., Prosviryakov E. Yu. Exact solutions for layered three-dimensional nonstationary isobaric flows of a viscous incompressible fluid, J. Appl. Mech. Tech. Phys., 2019, vol. 60, no. 6, pp. 1031–1037. EDN: VKJMMQ. DOI: https://doi.org/10.1134/S0021894419060075.
- Berker R. Sur quelques cas d’intégration des équations du mouvement d’un fluide visqueux incompressible. Paris-Lille, Imprimerie A. Taffin-Lefort, 1936, 161 pp. (In French)
- Shmyglevskii Yu. D. On isobaric planar flows of a viscous incompressible liquid, USSR Comput. Math. Math. Phys., 1985, vol. 25, no. 6, pp. 191–193. DOI: https://doi.org/10.1016/0041-5553(85)90030-8.
- Lin C. C. Note on a class of exact solutions in magneto-hydrodynamics, Arch. Rational Mech. Anal., 1957, vol. 1, no. 1, pp. 391–395. DOI: https://doi.org/10.1007/BF00298016.
- Sidorov A. F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory, J. Appl. Mech. Tech. Phys., 1989, vol. 30, no. 2, pp. 197–203. EDN: LZHPWE. DOI: https://doi.org/10.1007/BF00852164.
- Aristov S. N. Eddy Currents in Thin Liquid Layers, Dr. Sci. [Phys.-Math.] Dissertation. Vladivostok, 1990, 303 pp. (In Russian)
- Burmasheva N. V., Prosviryakov E. Yu. Exact solutions to the Navier–Stokes equations describing stratified fluid flows, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2021, vol. 25, no. 3, pp. 491–507. EDN: JKXFDQ. DOI: https://doi.org/10.14498/vsgtu1860.
- Burmasheva N. V., Prosviryakov E. Yu. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 4, pp. 736–751 (In Russian). EDN: YUGZXQ. DOI: https://doi.org/10.14498/vsgtu1568.
- Burmasheva N. V., Prosviryakov E. Yu. Studying the stratification of hydrodynamic fields for laminar flows of vertically swirling fluids, Diagnostics, Resource and Mechanics of Materials and Structures, 2020, no. 4, pp. 62–78. DOI: https://doi.org/10.17804/2410-9908. 2020.4.062-078.
- Landau L. D., Lifshitz E. M. Fluid Mechanics, Course of Theoretical Physics, vol. 6. Oxford, Pergamon Press, 1963, xii+536 pp.
- Kochin N. K., Kibel I. A., Roze N. V. Theoretical Hydromechanics. New York, John Wiley and Sons, 1964, v+577 pp.
Supplementary files
