One way of summing multidimensional series
- Authors: Sabitov K.B.1
 - 
							Affiliations: 
							
- Sterlitamak Branch of the Ufa University of Science and Technology
 
 - Issue: Vol 27, No 4 (2023)
 - Pages: 745-752
 - Section: Short Communications
 - URL: https://journal-vniispk.ru/1991-8615/article/view/311005
 - DOI: https://doi.org/10.14498/vsgtu2069
 - EDN: https://elibrary.ru/UMYSET
 - ID: 311005
 
Cite item
Full Text
Abstract
It is known that in analysis courses, multiple series are considered only at a conceptual level, and their simplest properties are provided. Two widely used methods for summing multiple Fourier series are the spherical and rectangular methods. The present study is devoted to a new method of proving the convergence of multidimensional series by reducing them to a one-dimensional series, allowing applicating known statements for one-dimensional series to multidimensional ones. Examples of justifying the convergence of numerical and functional series are provided as an illustration of this summing method.
Full Text
##article.viewOnOriginalSite##About the authors
Kamil B. Sabitov
Sterlitamak Branch of the Ufa University of Science and Technology
							Author for correspondence.
							Email: sabitov_fmf@mail.ru
				                	ORCID iD: 0000-0001-9516-2704
				                																			                	http://www.mathnet.ru/person11101
							
Dr. Phys. & Math. Sci., Professor; Senior Researcher; Sector of Basic Scientific Research
Russian Federation, 453103, Sterlitamak, Lenin Ave., 49References
- Fichtenholz G. M. Kurs differentsial’nogo i integral’nogo ischisleniia [Course of Differential and Integral Calculus], vol. 1. Moscow, Fizmatlit, Laboratoriia Znanii, 2003, 863 pp. (In Russian)
 - Il’in V. A., Sadovnichii V. A., Sendov Bl. Kh. Matematicheskii analiz [Mathematical Analysis], vol. 2. Moscow, Moscow State Univ., 1987, 358 pp.
 - Kudryavtsev L. D. Kurs matematicheskogo analiza [A Course of Mathematical Analysis], vol. 1. Moscow, Vyssh. shk., 1981, 584 pp. (In Russian)
 - Bugrov Ya. S., Nikol’skii S. M. Vysshaia matematika. Differentsial’noe i integral’noe ischislenie [Higher Mathematics. Differential and Integral Calculus]. Moscow, Drofa, 2005, 509 pp. (In Russian). EDN: QJPBXF.
 - Chelidze V. G. Nekotorye metody summirovaniia dvoinykh riadov i dvoinykh integralov [Some Methods of Summation of Double Series and Double Integrals]. Tbilisi, Tbilisi Univ., 1977, 399 pp. (In Russian)
 - Yanushauskas A. I. Dvoinye riady [Double Series]. Novosibirsk, Nauka, 1980, 224 pp. (In Russian)
 - Sabitov K. B. Initial-boundary problem for a three-dimensional equation of mixed parabolichyperbolic type, In: Modern Problems of Mathematics and Mechanics. Moscow, MAKS Press, 2019, pp. 369–372 (In Russian).
 - Sabitov K. B. Dirichlet problem for a two-dimensional wave equation, In: Modern Problems of Computational Mathematics and Mathematical Physics. Moscow, Moscow State Univ., 2019, pp. 58–59 (In Russian).
 - Sabitov K. B., Sidorov S. N. Initial-boundary value problem for a three-dimensional equation of the parabolic-hyperbolic type, Differ. Equat., 2021, vol. 57, no. 8, pp. 1042–1052. EDN: OOAAGT. DOI: https://doi.org/10.1134/S0012266121080085.
 - Sabitov K. B., Sidorov S. N. Initial-boundary problem for a three-dimensional inhomogeneous equation of parabolic-hyperbolic type, Lobachevskii J. Math., 2020, vol. 41, no. 11, pp. 2257–2268. EDN: GBAUPE. DOI: https://doi.org/10.1134/S1995080220110190.
 - Sabitov K. B. Initial-boundary value problems for equation of oscillations of a rectangular plate, Russian Math. (Iz. VUZ), 2021, vol. 65, no. 10, pp. 52–62. EDN: FCMYHQ. DOI: https://doi.org/10.3103/S1066369X21100054.
 - Il’in V. A., Pozniak E. G. Osnovy matematicheskogo analiza [Fundamentals of Mathematical Analysis] Part II. Moscow, Fizmatlit, 2001, 453 pp. (In Russian). EDN: UGLQPL.
 
Supplementary files
				
			
					
						
				

