Parametric identification of concentrated effects in multidimensional inverse heat conduction problems
- Authors: Diligenskaya A.N.1, Bochkareva I.S.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 28, No 2 (2024)
- Pages: 286-301
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journal-vniispk.ru/1991-8615/article/view/311013
- DOI: https://doi.org/10.14498/vsgtu2081
- EDN: https://elibrary.ru/IBMBBN
- ID: 311013
Cite item
Full Text
Abstract
The study is dedicated to further research and development of constructive methods for sequential parametric optimization of unknown characteristics of nonstationary processes in technological heat physics on a compact set of continuous and continuously differentiable functions. The proposed methodology extends the algorithmically accurate method developed for solving inverse problems in technological heat physics to the multidimensional case of the inverse heat conduction problem, allowing the identification of a physically justified characteristic on sequentially converging compact sets.
The research focuses on a two-dimensional axisymmetric body of canonical shape. The problem is formulated in a uniform metric for assessing the temperature deviation of the calculated state from the experimental one. The mathematical model of the studied object is based on its modal description, which led to the reduction of the original inverse heat conduction problem, formulated in an extremal setting, to an optimal control problem.
The use of preliminary parameterization of the sought-after characteristic of the process results in its representation in the form of piecewise-parabolic functions defined by a parameter vector. The number of considered parameters determines the specific type of approximating function, and their values are found by solving the obtained parametric optimization problem. To solve the mathematical programming problem for optimal parameter vector values, alternating properties of the sought extremals are used, similar to the one-dimensional case, leading to the formulation of a closed system of relationships.
The obtained results demonstrate the effectiveness of extending the constructive method of sequential parametric optimization, tested on one-dimensional inverse heat conduction problems, to solving two-dimensional problems using their modal representation. Increasing the number of parameters of solutions forming the piecewise-parabolic form of the sought dependence leads to a reduction in the reconstruction error of both the sought concentrated function and the spatial-temporal temperature field throughout the domain of spatial variables.
Full Text
##article.viewOnOriginalSite##About the authors
Anna N. Diligenskaya
Samara State Technical University
Author for correspondence.
Email: adiligenskaya@mail.ru
ORCID iD: 0000-0002-9867-9781
https://www.mathnet.ru/person119447
Dr. Eng. Sci., Associate Professor; Professor; Dept. of Automation and Control in Technical Systems
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244Irina S. Bochkareva
Samara State Technical University
Email: ytychinina@list.ru
ORCID iD: 0009-0005-3282-7680
https://www.mathnet.ru/person208351
Postgraduate Student; Dept. of Automation and Control in Technical Systems
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244References
- Alifanov O. M. Obratnye zadachi teploobmena [Inverse Heat Transfer Problems]. Moscow, Mashinostroenie, 1988, 280 pp. (In Russian)
- Özis˛ik M. N., Orlande H. R. B. Inverse Heat Transfer: Fundamentals and Applications. New York, Routledge, 2000, xx+330 pp. DOI: https://doi.org/10.1201/9781003155157.
- Samarskii A. A, Vabishchevich P. N. Numerical Methods for Solving Inverse Problems of Mathematical Physics, Inverse and Ill-Posed Problems Series. Berlin, New York, de Gruyter, 2007, xiv+438 pp. DOI: https://doi.org/10.1515/9783110205794.
- Alifanov O. M., Artyukhin E. A., Rumyantsev S. V. Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems. New York, Begell House, 1995, xii+306 pp.
- Danilaev P. G. Comparison of two regularizing algorithms for the solution of a coefficient inverse problem, Russian Math. (Iz. VUZ), 2003, vol. 47, no. 5, pp. 1–6.
- Pilipenko N. V., Gladskikh D. A. Solving direct and inverse problems of thermal conductivity based on differential-difference models of heat transfer, Izv. Vuzov. Priborostr., 2007, vol. 50, no. 3, pp. 69–74 (In Russian). EDN: HEJTCV.
- Grysa K. Inverse heat conduction problems, In: V. S. Vikhrenko (ed.) Heat Conduction — Basic Research. IntechOpen, 2011, pp. 3–36. DOI: https://doi.org/10.5772/26575.
- Yaparova N. M. On various approaches to solving inverse boundary value problems of thermal diagnostics, Vestn. Yuzhno-Uralsk. Gosud. Univ. Ser. Matematika. Mekhanika. Fizika, 2012, no. 34, pp. 60–67 (In Russian). EDN: NRJZKZ.
- Alifanov O. M., Nenarokomov A. V. Three-dimensional boundary-value inverse heatconduction problem, High Temperature, 1999, vol. 37, no. 2, pp. 209–216.
- Guerrier B., Benard C. Two-dimensional linear transient inverse heat conduction problem—Boundary condition identification, J. Thermophys. Heat Transfer, 1993, vol. 7, no. 3, pp. 472-478. DOI: https://doi.org/10.2514/3.442.
- Rapoport E. Ya., Diligenskaya A. N. Modal identification of a boundary input in the twodimensional inverse heat conduction problem, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 2, pp. 380–394 (In Russian). EDN: XWXSNN. DOI: https://doi.org/10.14498/vsgtu1627.
- Diligenskaya A. N. Analytical identification of spatiotemporal control in inverse problems of thermal conductivity based on modal representation, Vestn. Samar. Gosud. Tekhn. Univ. Ser. Tekhn. Nauki, 2012, no. 4, pp. 31–38 (In Russian). EDN: QBUTFD.
- Diligenskaya A. N., Rapoport E. Ya. Analytical conditions for optimality in inverse problems of heat conduction, High Temp., 2021, vol. 59, no. 3, pp. 292–301. EDN: GIRKEM. DOI: https://doi.org/10.1134/S0018151X21030032.
- Diligenskaya A. N. Solution of the retrospective inverse heat conduction problem with parametric optimization, High Temp., 2018, vol. 56, no. 3, pp. 382–388. EDN: YBTJWH. DOI: https://doi.org/10.1134/S0018151X18020050.
- Diligenskaya A. N., Rapoport E. Ya. Analytical methods of parametric optimization in inverse heat-conduction problems with internal heat release, J. Eng. Phys. Thermophys., 2014, vol. 87, no. 5, pp. 1126–1134. EDN: UFURCF. DOI: https://doi.org/10.1007/s10891-014-1114-1.
- Koshlyakov N. S., Gliner E. B., Smirnov M. M. Uravneniia v chastnykh proizvodnykh matematicheskoi fiziki [Partial Differential Equations of Mathematical Physics]. Moscow, Vyssh. Shk., 1970, 336 pp. (In Russian)
- Rapoport E. Ya. Al’ternansnyy metod v prikladnykh zadachakh optimizatsii [Alternance Method in Applied Optimization Problems]. Moscow, Nauka, 2000, 336 pp. (In Russian). EDN: TTRVMB.
- Nemkov V. S., Demidovich V. B. Teoriia i raschet ustroistv induktsionnogo nagreva [Theory and Calculation of Induction Heating Devices]. Leningrad, Energoatomizdat, 1988, 280 pp. (In Russian). EDN: SCTRML.
- Rudnev V. I., Loveless D., Cook R. L. Handbook of Induction Heating. Boca Raton, CRC Press, 2017, 772 pp. DOI: https://doi.org/10.1201/9781315117485.
- Rapoport E. Ya., Pleshivtseva Yu. E. Optimal Control of Induction Heating Processes. Boca Raton, CRC Press, 2007, 349 pp. EDN: UIEQHJ. DOI: https://doi.org/10.1201/9781420019490.
Supplementary files
