Residual stress analysis in surface-hardened rotating prismatic elements with semicircular notches under high-temperature creep

Cover Page

Cite item

Full Text

Abstract

A numerical method is developed to calculate the relaxation of residual stresses in a rotating surface-hardened prismatic sample with a semicircular notch under high-temperature creep conditions. The problem models the stressed-deformed state of a sample fixed on a disk rotating at a constant speed.
The methodology includes the following steps:
– reconstruction of residual stress and plastic deformation fields after preliminary surface plastic deformation;
– calculation of residual stress relaxation during creep in a rotating prismatic rod.
A detailed analysis is performed on a prismatic sample measuring 150 $\times$ 10 $\times$10 mm made of EP742 alloy. One face of this sample is hardened using mechanical ultrasonic treatment. The problem is analyzed for samples with semicircular notches of 0.1 mm and 0.3 mm radii, located 2 mm and 75 mm from the fixed edge.
For the notched regions after preliminary surface plastic deformation, the problems are solved in both elastic and elastoplastic formulations. The obtained initial fields of residual stresses and plastic deformations are used as input data for the creep problem.
The analysis of the influence of notch radius, location, angular velocity, and initial residual stress fields on the relaxation of residual stresses is conducted at a temperature of 650 °C based on phenomenological flow theory established from known experimental data for this alloy.
Results show that to determine the initial stressed-deformed state after preliminary plastic deformation for a notch radius of 0.1 mm, an elastoplastic solution is necessary, while for a radius of 0.3 mm, the differences between elastic and elastoplastic solutions are minimal.
The study of residual stress relaxation is conducted at angular velocities of 1500 and 2000 RPM over a period of 100 hours. Despite significant relaxation of residual stresses for samples with notches of radii 0.1 mm and 0.3 mm, a substantial level of residual compressive stresses remains in the notch regions after complete thermal-mechanical unloading. This indicates the high effectiveness of surface hardening under high-temperature creep conditions.

About the authors

Vladimir P. Radchenko

Samara State Technical University

Author for correspondence.
Email: radchenko.vp@samgtu.ru
ORCID iD: 0000-0003-4168-9660
SPIN-code: 1823-0796
Scopus Author ID: 7004402189
ResearcherId: J-5229-2013
http://www.mathnet.ru/person38375

Dr. Phys. & Math. Sci., Professor; Head of Department; Dept. of Applied Mathematics & Computer Science

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Mikhail N. Saushkin

Samara State Technical University

Email: saushkin.mn@samgtu.ru
ORCID iD: 0000-0002-8260-2069
SPIN-code: 9740-1416
Scopus Author ID: 35318659800
ResearcherId: A-8120-2015
https://www.mathnet.ru/person38368

Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Applied Mathematics & Computer Science

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Dmitry M. Shishkin

Syzran’ Branch of Samara State Technical University

Email: shishkin.dim@yandex.ru
ORCID iD: 0000-0003-3205-2262
https://www.mathnet.ru/person164459

Cand. Techn. Sci.; Associate Professor; Dept. of General Theoretical Disciplines

Russian Federation, 446001, Samara region, Syzran, Sovetskaya str., 45

References

  1. Birger I. A. Ostatochnye napriazheniia [Residual Stresses]. Moscow, Mashgiz, 1963, 232 pp. (In Russian)
  2. Grinchenko I. G. Uprochnenie detalei iz zharoprochnykh i titanovykh splavov [The Hardening of Parts of Heat-Resistant and Titanium Alloys]. Moscow, Mashinostroenie, 1971, 120 pp.
  3. Ivanov S. I., Shatunov M. P., Pavlov V. F. Influence of residual stresses on notched specimen endurance, In: Problems of Strength of Aircraft Structure Elements, Issue 1. Kuibyshev, Kuibyshev Aviation Inst., 1974, pp. 88–95 (In Russian).
  4. Kudryavtsev I. V. Poverkhnostnyi naklep dlia povysheniia prochnosti i dolgovechnosti detalei mashin poverkhnostnym plasticheskim deformirovaniem [Surface Strain Hardening to Increase the Strength and Durability of Machine Parts]. Moscow, Mashinostroenie, 1969, 100 pp. (In Russian)
  5. Nozhnitskii Yu. A., Fishgoit A. V., Tkachenko R. I., Teplova S. V. Development and application of new GTE parts hardening methods based on the plastic deformation of the surface layers, Vestn. Dvigatel., 2006, no. 2, pp. 8–16 (In Russian).
  6. Sulima G. N., Shuvalov V. A., Yagodkin Yu. D. Poverkhnostnyi sloi i ekspluatatsionnye svoistva detalei mashin [Surface Layer and Performance Properties of Machine Parts]. Moscow, Mashinostroenie, 1988, 240 pp. (In Russian)
  7. Buchanan D. J., John R. Relaxation of shot-peened residual stresses under creep loading, Scripta Materialia, 2008, vol. 59, no. 3, pp. 286–289. DOI: https://doi.org/10.1016/j.scriptamat.2008.03.021.
  8. Kravchenko B. A.,Krutsilo V. G., Gutman G. N. Termoplasticheskoe uprochnenie – rezerv povysheniya prochnosti i nadezhnosti detalei mashin [Thermoplastic Hardening as a Reserve for Increasing the Strength and Reliability of Machine Parts]. Samara, Samara State Technical Univ., 2000, 216 pp. (In Russian)
  9. Hereñú S., Strubbia R., Rubio-González C., et al. High cycle fatigue life improvement of superferritic stainless steel by laser shock peening without coating, Optics Laser Tech., 2022, vol. 152, 108083. DOI: https://doi.org/10.1016/j.optlastec.2022.108083.
  10. Chen M., Xing S., Liu H., et al. Determination of surface mechanical property and residual stress stability for shot-peened SAF2507 duplex stainless steel by in situ X-ray diffraction stress analysis, J. Mater. Res. Technol., 2022, vol. 9, no. 4, pp. 7644–7654. DOI: https://doi.org/10.1016/j.jmrt.2020.05.028.
  11. Peng X., Liang Y., Qin X., Gu J. The effect of ultrasonic surface rolling process on tensiontension fatigue limit of small diameter specimens of Inconel 718 superalloy, Int. J. Fatigue, 2022, vol. 162, 106964. DOI: https://doi.org/10.1016/j.ijfatigue.2022.106964.
  12. Zhao J., Zhou W., Tang J., et al. Analytical and experimental study on the surface generation mechanism in shot peening, Archiv. Civ. Mech. Eng., 2022, vol. 22, 111. DOI: https://doi.org/10.1007/s43452-022-00431-7.
  13. Mitryaev K. F., Egorov V. I., Malkov G. F., et al. Improving the fatigue strength of heat-resistant materials by diamond burnishing of the surface of the part, In: Ostatochnye napriazheniia [Residual Stresses], Issue 53. Kuibyshev, Kuibyshev Aviation Institute, 1971, pp. 151–159 (In Russian).
  14. Radchenko V. P., Morozov A. P. Experimental study of the effect induced by air shotblasting processing, thermal exposition and high cycle fatigue tests on physical and mechanical condition hardening layer of cylindrical samples of alloys V95 and D16T, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 5, pp. 222–228 (In Russian). EDN: NCTNON. DOI: https://doi.org/10.14498/vsgtu829.
  15. Pavlov V. F., Kirpichev V. A., Ivanov V. B. Ostatochnye napriazheniia i soprotivlenie ustalosti uprochnennykh detalei s kontsentratorami napriazhenii [Residual Stresses and Fatigue Resistance of Hardened Parts with Stress Concentrators]. Samara, Samara Sci. Center of RAS, 2008, 64 pp. (In Russian)
  16. Radchenko V. P., Saushkin M. N. Polzuchest’ i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Hardened Structures]. Moscow, Mashinostroenie-1, 2005, 226 pp. (In Russian). EDN: RXLJLN.
  17. Radchenko V. P., Pavlov V. Ph., Saushkin M. N. Investigation of surface plastic hardening anisotropy influence on residual stresses distribution in hollow and solid cylindrical specimens, PNRPU Mechanics Bulletin, 2015, no. 1, pp. 130–147 (In Russian). EDN: TVSBYV. DOI: https://doi.org/10.15593/perm.mech/2015.1.09.
  18. Pavlov V. F., Bukaty A. S., Semenova O. Yu. Forecasting of the endurance limit of surfacehardened parts with stress concentrators, Vestn. Mashinostroeniya, 2019, no. 1, pp. 3–7 (In Russian). EDN: VTAEPK.
  19. Pavlov V. F., Kirpichev V. A., Vakuluk V. S. Prognozirovanie soprotivleniia ustalosti poverkhnostno uprochnennykh detalei po ostatochnym napriazheniiam [Prediction of Fatigue Resistance of Surface Reinforced Parts by Residual Stresses]. Samara, Samara Sci. Center of RAS, 2012, 125 pp. (In Russian)
  20. Bag A., Lévesque M., Brochu M. Effect of shot peening on short crack propagation in 300M steel, Int. J. Fatigue, 2020, vol. 131, 105346. DOI: https://doi.org/10.1016/j.ijfatigue.2019.105346.
  21. Fleury R., Nowell D. Evaluating the influence of residual stresses and surface damage on fatigue life of nickel superalloys, Int. J. Fatigue, 2017, vol. 105, pp. 27–33. DOI: https://doi.org/10.1016/j.ijfatigue.2017.08.015.
  22. Foss B., Gray S., Hardy M., et al. Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000, Acta Materialia, 2013, vol. 61, no. 7, pp. 2548–2559. DOI: https://doi.org/10.1016/j.actamat.2013.01.031.
  23. Soyama H. Comparison between shot peening, cavitation peening, and laser peening by observation of crack initiation and crack growth in stainless steel, Metals, 2019, vol. 10, no. 1, 63. DOI: https://doi.org/10.3390/met10010063.
  24. Takahashi K., Osedo H., Suzuki T., Fukuda S. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening, Eng. Fract. Mech., 2018, vol. 193, pp. 151–161. DOI: https://doi.org/10.1016/j.engfracmech.2018.02.013.
  25. You C., Achintha M., He B. Y., Reed P. A. S. A numerical study of the effects of shot peening on the short crack growth behaviour in notched geometries under bending fatigue tests, Int. J. Fatigue, 2017, vol. 103, pp. 99–111. DOI: https://doi.org/10.1016/j.ijfatigue.2017.05.023.
  26. Zhao X., Sun Z., Xu D., Liu Y. Local fatigue strength evaluation of shot peened 40Cr notched steel, Metals, 2018, vol. 8, no. 9, 681. DOI: https://doi.org/10.3390/met8090681.
  27. Radchenko V. P., Shishkin D. M. The method of reconstruction of residual stresses in a prismatic specimen with a notch of a semicircular profile after advanced surface plastic deformation, Izv. Saratov Univ. Math. Mech. Inform., 2020, vol. 20, no. 4, pp. 478–492 (In Russian). EDN: ZPKSUN. DOI: https://doi.org/10.18500/1816-9791-2020-20-4-478-492.
  28. Radchenko V. P., Shishkin D. M. Numerical method for calculating the stress-strain state in a prismatic surface-hardened spacemen with a notch in elastic and elastoplastic formulations, Izv. Saratov Univ. Math. Mech. Inform., 2021, vol. 21, no. 4, pp. 503–519 (In Russian). EDN: KNHHLG. DOI: https://doi.org/10.18500/1816-9791-2021-21-4-503-519.
  29. Radchenko V. P., Kirpichev V. A., Lunin V. A. Influence of thermoexposition on residual stresses of specimens from EP742 alloy after the ultrasonic hardening, Vestn. Samar. Gos. Tekhn. Univ. Ser. Techn. Nauki, 2012, no. 3, pp. 147–154 (In Russian). EDN: PYUQNV.
  30. Radchenko V. P., Saushkin M. N., Bochkova T. I. Mathematical modeling and experimental study of forming and relaxation of the residual stresses in plane samples made of EP742 alloy after the ultrasonic hardening under the hightemperature creep conditions, PNRPU Mechanics Bulletin, 2016, no. 1, pp. 93–112 (In Russian). EDN: VQTAHL. DOI: https://doi.org/10.15593/perm.mech/2016.1.07.
  31. Radchenko V. P., Liberman A. E., Blokhin O. L. Relaxation of residual stresses in a surfacehardened rotating cylinder under creep conditions, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2022, vol. 26, no. 1, pp. 119–139 (In Russian). EDN: GFBZBC. DOI: https://doi.org/10.14498/vsgtu1884.
  32. Radchenko V. P., Berbasova T. I., Saushkin M. N., Akinfieva M. M. Relaxation of residual stresses in surface-hardened rotating prismatic elements of structures under creep conditions, Izv. Saratov Univ. Math. Mech. Inform., 2023, vol. 23, no. 4, pp. 512–530 (In Russian). EDN: TAEGBQ. DOI: https://doi.org/10.18500/1816-9791-2023-23-4-512-530.
  33. Radchenko V. P., Eremin Yu. A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements]. Moscow, Mashinostroenie-1, 2004, 264 pp. (In Russian). EDN: QNATSX.
  34. Rabotnov Yu. N. Creep problems in structural members, North-Holland Series in Applied Mathematics and Mechanics, vol. 7. Amsterdam, London, North-Holland Publ. Co., 1969, xiv+822 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. The loading scheme for a surface-hardened sample with semicircular notches

Download (72KB)
3. Figure 2. Data for the component ${\sigma_x=\sigma_x(y)}$ after ultrasonic surface hardening of a prismatic sample measuring $150{\times}10{\times}10$ mm made of EP742 alloy: experimental data (markers) [28, 32], calculated data from approximation (6) (solid line), and for the thermoelastic problem (dashed line)

Download (87KB)
4. Figure 3. The stress-strain curves of the EP742 alloy under elastic-plastic deformation at a temperature of 20 °C: 1 — experimental data [23], 2 — calculation in coordinates $\sigma _{0}$ – $\varepsilon$, 3 — calculation in coordinates $\sigma$ – $\varepsilon$

Download (82KB)
5. Figure 4. Experimental (points) and theoretical (solid lines) creep curves of the EP742 alloy at a temperature of 650 °C: 1 — $\sigma=588.6$ MPa, 2 — $\sigma=637.6$ MPa, 3 — $\sigma=686$ MPa

Download (109KB)
6. Figure 5. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular rotation speed of 1500 RPM in the section $x = 75$ mm, obtained for a smooth sample using FEM (a) and the mesh method (b) [32]. Calculated values: 1 — after the hardening procedure at 20 $^\circ$C at time $t = 0 - 0$; 2 — after temperature loading up to 650 $^\circ$C at time $t = 0 + 0$; 3 — after force loading from rotation at 650 $^\circ$C at time $t = 0 + 0$; 4 — after creep under temperature-force loading at 650 $^\circ$C at time $t = 100 - 0$ h; 5 — after force unloading at 650 $^\circ$C at time $t = 100 + 0$ h; 6 — after temperature unloading to 20 $^\circ$C at time $t = 100 + 0$ h

Download (269KB)
7. Figure 6. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular rotation speed of 1500 RPM in the section $x = 75$ mm, obtained for a smooth sample using FEM (a) and the mesh method (b) [32]. The markers mean the same thing as in Figure 5

Download (280KB)
8. Figure 7. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular velocity of 1500 RPM in the section $x = 2$ mm for $\rho = 0.1$ mm, obtained from the elastic solution (a) and the elastoplastic solution (b). The markers mean the same thing as in Figure 5

Download (279KB)
9. Figure 8. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular velocity of 1500 RPM in the section $x = 75$ mm for $\rho = 0.1$ mm, obtained from the elastic solution (a) and the elastoplastic solution (b). The markers mean the same thing as in Figure 5

Download (281KB)
10. Figure 9. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular velocity of 2000 RPM in the section $x = 2$ mm for $\rho = 0.1$ mm, obtained from the elastic solution (a) and the elastoplastic solution (b). The markers mean the same thing as in Figure 5

Download (293KB)
11. Figure 10. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular velocity of 2000 RPM in the section $x = 75$ mm for $\rho = 0.1$ mm, obtained from the elastic solution (a) and the elastoplastic solution (b). The markers mean the same thing as in Figure 5

Download (282KB)
12. Figure 11. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular velocity of 1500 RPM in the section $x = 2$ mm for $\rho = 0.3$ mm, obtained from the elastic solution (a) and the elastoplastic solution (b). The markers mean the same thing as in Figure 5

Download (266KB)
13. Figure 12. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular velocity of 1500 RPM in the section $x = 75$ mm for $\rho = 0.3$ mm, obtained from the elastic solution (a) and the elastoplastic solution (b). The markers mean the same thing as in Figure 5

Download (282KB)
14. Figure 13. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular velocity of 2000 RPM in the section $x = 2$ mm for $\rho = 0.3$ mm, obtained from the elastic solution (a) and the elastoplastic solution (b). The markers mean the same thing as in Figure 5

Download (283KB)
15. Figure 14. The kinetic data for the components $\sigma _{x}$ under creep conditions at an angular velocity of 2000 RPM in the section $x = 75$ mm for $\rho = 0.3$ mm, obtained from the elastic solution (a) and the elastoplastic solution (b). The markers mean the same thing as in Figure 5

Download (278KB)

Copyright (c) 2024 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».