Inverse kernel determination problem for a class of pseudo-parabolic integro-differential equations
- Authors: Durdiev D.K.1,2, Elmuradova H.B.2, Rahmonov A.A.1,2
-
Affiliations:
- Bukhara Branch of the Institute of Mathematics named after V. I. Romanovskiy at the Academy of Sciences of the Republic of Uzbekistan
- Bukhara State University
- Issue: Vol 29, No 1 (2025)
- Pages: 7-20
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/311023
- DOI: https://doi.org/10.14498/vsgtu2095
- EDN: https://elibrary.ru/WGZAMY
- ID: 311023
Cite item
Full Text
Abstract
This study investigates an inverse problem involving the determination of the kernel function in a multidimensional integrodifferential pseudo-parabolic equation of the third order. The study begins with an analysis of the direct problem, where we examine an initial-boundary value problem with homogeneous boundary conditions for a known kernel. Employing the Fourier method, we construct the solution as a series expansion in terms of eigenfunctions of the Laplace operator with Dirichlet boundary conditions. A crucial component of our analysis involves deriving a priori estimates for the series coefficients in terms of the kernel function norm, which play a fundamental role in our subsequent treatment of the inverse problem.
For the inverse problem, we introduce an overdetermination condition specifying the solution value at a fixed spatial point (pointwise measurement). This formulation leads to a Volterra-type integral equation of the second kind. By applying the Banach fixed-point principle within the framework of continuous functions equipped with an exponentially weighted norm, we establish the global existence and uniqueness of solutions to the inverse problem. Our results demonstrate the well-posedness of the problem under
consideration.
Full Text
##article.viewOnOriginalSite##About the authors
Durdimurod K. Durdiev
Bukhara Branch of the Institute of Mathematics named after V. I. Romanovskiy at the Academy of Sciences of the Republic of Uzbekistan; Bukhara State University
Email: d.durdiev@mathinst.uz
ORCID iD: 0000-0002-6054-2827
http://www.mathnet.ru/person29112
Dr. Phys. & Math. Sci., Professor; Head of Branch1; Professor, Dept. of Differential Equations2
Uzbekistan, 705018, Bukhara, Muhammad Igbol st., 11; 705018, Bukhara, Muhammad Igbol st., 11Hilola B. Elmuradova
Bukhara State University
Email: helmuradova@mail.ru
ORCID iD: 0000-0003-4306-2589
https://www.mathnet.ru/person228134
Teacher; PhD Student; Dept. of Differential Equations2
Uzbekistan, 705018, Bukhara, Muhammad Igbol st., 11Askar A. Rahmonov
Bukhara Branch of the Institute of Mathematics named after V. I. Romanovskiy at the Academy of Sciences of the Republic of Uzbekistan; Bukhara State University
Author for correspondence.
Email: araxmonov@mail.ru
ORCID iD: 0000-0002-7641-9698
https://www.mathnet.ru/person67047
Cand. Phys. & Math. Sci., Associate Professor; Senior Researcher1; Associate Professor, Dept. of Differential Equations2
Uzbekistan, 705018, Bukhara, Muhammad Igbol st., 11; 705018, Bukhara, Muhammad Igbol st., 11References
- Romanov V. G. Investigation Methods for Inverse Problems, Inverse and Ill-Posed Problems Series. Utrecht, VSP, 2002, xii+280 pp.
- Denisov A. M. Elements of the Theory of Inverse Problems, Inverse and Ill-Posed Problems Series. Utrecht, VSP, 1999, iv+272 pp.
- Hasanov Hasanoğlu A., Romanov V. G. Introduction to Inverse Problems for Differential Equations. Cham, Springer, 2017, xiii+261 pp. DOI: https://doi.org/10.1007/978-3-319-62797-7.
- Safarov J. Sh. Inverse problem for an integro-differential equation of hyperbolic type with additional information of a special form in a bounded domain, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, vol. 28, no. 1, pp. 29–44 (In Russian). EDN: WSCTDR. DOI: https://doi.org/10.14498/vsgtu1997.
- Lesnic D. Inverse Problems with Applications in Science and Engineering. New York, CRC Press, 2022, xv+342 pp. DOI: https://doi.org/10.1201/9780429400629.
- Durdiev D. K., Totieva Z. D. Kernel Determination Problems in Hyperbolic Integro-Differential Equations, Infosys Science Foundation Series. Singapore, Springer Nature, 2023, xxvi+368 pp. DOI: https://doi.org/10.1007/978-981-99-2260-4.
- Chudnovskii A. F. Thermophysics of Soils. Moscow, Nauka, 1976, 352 pp. (In Russian)
- Barenblatt G. I., Zhelton Yu. P., Kochina I. N. Basic concepts in the theory of seepage homogeneous liquids in fissured rocks (strata), J. Appl. Math. Mech., 1960, vol. 24, no. 5, pp. 1286–1303. DOI: https://doi.org/10.1016/0021-8928(60)90107-6.
- Rundell W. Colton D. L Determination of an unknown non-homogeneous term in a linear partial differential equation from overspecified boundary data, Appl. Anal., 1980, vol. 10, no. 3, pp. 231–242. DOI: https://doi.org/10.1080/00036818008839304.
- Huntul M. J. Recovering a source term in the higher-order pseudo-parabolic equation via cubic spline functions, Phys. Scr., 2022, vol. 97, no. 3, 035004. DOI: https://doi.org/10.1088/1402-4896/ac54d0.
- Colombo F., Guidetti D. Identification of the memory kernel in the strongly damped wave equation by a flux condition, Commun. Pure Appl. Anal., 2009, vol. 8, no. 2, pp. 601–620. DOI: https://doi.org/10.3934/cpaa.2009.8.601.
- Lorenzi A., Rossa E. Identification of two memory kernels in a fully hyperbolic phasefield system, J. Inverse Ill-Posed Probl., 2008, vol. 16, pp. 147–174. DOI: https://doi.org/10.1515/JIIP.2008.010.
- Lorenzi A., Messina F. An identification problem with evolution on the boundary of parabolic type, Adv. Diff. Equ., 2008, vol. 13, no. 11–12, pp. 1075–1108. DOI: https://doi.org/10.57262/ade/1355867287.
- Durdiev D. K., Nuriddinov Z. Z. Determination of a multidimensional kernel in some parabolic integro-differential equation, J. Sib. Fed. Univ. Math. Phys., 2021, vol. 14, no. 1, pp. 117–127. EDN: RMPPXU. DOI: https://doi.org/10.17516/1997-1397-2021-14-1-117-127.
- Durdiev D. K., Zhumaev Zh. Zh. Memory kernel reconstruction problems in the integrodifferential equation of rigid heat conductor, Math. Meth. Appl. Sci., 2022, vol. 45, no. 14, pp. 8374–8388. EDN: AWTYYE. DOI: https://doi.org/10.1002/mma.7133.
- Janno J., Von Wolfersdorf L. Inverse problems for identification of memory kernels in viscoelasticity, Math. Meth. Appl. Sci., 1987, vol. 20, no. 4, pp. 291–314. DOI: https://doi.org/10.1002/(SICI)1099-1476(19970310)20:4<291::AID-MMA860>3.0.CO;2-W.
- Il’in V. A. The solvability of mixed problems for hyperbolic and parabolic equations, Russian Math. Surveys, 1960, vol. 15, no. 2, pp. 85–142. DOI: https://doi.org/10.1070/RM1960v015n02ABEH004217.
- Durdiev D. K., Zhumaev Zh. Zh. On determination of the coefficient and kernel in an integrodifferential equation of parabolic type, Euras. J. Math. Comp. Appl., 2023, vol. 11, no. 1, pp. 49-65. EDN: HFYBVP. DOI: https://doi.org/10.32523/2306-6172-2023-11-1-49-65.
- Durdiev D. K., Zhumaev Zh. Zh., Atoev D. D. Inverse problem on determining two kernels in integro-differential equation of heat flow, Ufa Math. J., 2023, vol. 15, no. 2, pp. 119–134. EDN: SBHNJU. DOI: https://doi.org/10.13108/2023-15-2-119.
- Durdiev D. K., Boltaev A. A. Global solvability of an inverse problem for a Moore–Gibson–Thompson equation with periodic boundary and integral overdetermination conditions, Euras. J. Math. Comp. Appl., 2024, vol. 12, no. 2, pp. 35–49. EDN: GGMWBQ. DOI: https://doi.org/10.32523/2306-6172-2024-12-2-35-49.
Supplementary files
