Optimization of the error in exponential-trigonometric interpolation formula
- Authors: Shadimetov K.M.1,2, Boltaev A.K.3,4
-
Affiliations:
- Tashkent State Transport University
- V.I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan
- V.I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan
- International Nordic University
- Issue: Vol 28, No 4 (2024)
- Pages: 665-681
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/311025
- DOI: https://doi.org/10.14498/vsgtu2094
- EDN: https://elibrary.ru/CJETPO
- ID: 311025
Cite item
Full Text
Abstract
In engineering geodesy, point clouds obtained through area measurement methods, such as terrestrial laser scanning or photogrammetry, need to be approximated by a curve or surface that can be described by using a continuous mathematical function, often employing splines and optimal interpolation formulas.
This work is devoted to the construction of an optimal interpolation formula that is exact for exponential-trigonometric functions in a Hilbert space. The optimal interpolation formula is obtained by minimizing the norm of the error functional with respect to the coefficients. The article proves the existence and uniqueness of the optimal interpolation formula and provides explicit analytical expressions for the optimal coefficients of the interpolation formula. Using the constructed optimal interpolation formula, specific functions were interpolated, and a comparison was made with known results from other authors.
Full Text
##article.viewOnOriginalSite##About the authors
Kholmat M. Shadimetov
Tashkent State Transport University; V.I. Romanovskiy Institute of Mathematicsof the Academy of Sciences of the Republic of Uzbekistan
Email: kholmatshadimetov@mail.ru
ORCID iD: 0000-0002-4183-6184
https://www.mathnet.ru/person51749
Dr. Phys. & Math. Sci., Professor; Head of Department; Dept. of Computer Science and Graphics; Leading Research Scientist; Lab. of Computational Mathematics
Uzbekistan, 100167, Tashkent, Temiryulchilar st., 1; 100174, Tashkent, University st., 9Aziz K. Boltaev
V.I. Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan; International Nordic University
Author for correspondence.
Email: aziz_boltayev@mail.ru
ORCID iD: 0000-0002-8329-4440
https://www.mathnet.ru/person178798
Cand. Phys. & Math. Sci., Associate Professor; Senior Research Scientist; Lab. of Computational Mathematics; Associate Professor; Dept. of Economics and Business Management
Uzbekistan, 100174, Tashkent, University st., 9; 100043, Tashkent, Bunyodkor st., 8/2References
- Ahlberg J. H., Nilson E. N., Walsh J. L. The Theory of Splines and Their Applications, Mathematics in Science and Engineering, vol. 38. New York, Academic Press, 1967, xi+284 pp. DOI: https://doi.org/10.1016/s0076-5392(08)x6115-6.
- Stechkin S. B., Subbotin Yu. N. Splainy v vychislitel’noi matematike [Splines in Numerical Mathematics]. Moscow, Nauka, 1976, 248 pp. (In Russian)
- Zav’yalov Yu. S., Kvasov B. I., Miroshnichenko V. L. Metody splain-funktsii [Methods of Spline Functions]. Moscow, Nauka, 1980, 352 pp. (In Russian)
- Nürnberger G. Approximation by Spline Functions. Berlin, Springer-Verlag, 1989, xi+243 pp.
- Ignatev M. I., Pevniy A. B. Natural’nye splainy mnogikh peremennykh [Natural Splines of Many Variables]. Leningrad, Nauka, 1991, 127 pp. (In Russian)
- Samarsky A. A. Vvedenie v chislennye metody [An Introduction to Numerical Methods]. Moscow, Nauka, 1987, 288 pp. (In Russian)
- Burden A. M., Faires J. D., Burden R. L. Numerical Analysis. Boston, MA, Cengage Learning, 2016, xvi+896 pp.
- Duchon J. Splines minimizing rotation-invariant semi-norms in Sobolev spaces, In: Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, 571, 1977, pp. 85-100. DOI: https://doi.org/10.1007/BFb0086566.
- Bojanov B. D., Hakopian H. A., Sahakian A. A. Spline Functions and Multivariate Interpolations, Mathematics and its Applications. Dordrecht, Kluwer Academic Publ., 1993, ix+276 pp.
- Bezhaev A. Yu., Vasilenko V. A. Variational Theory of Splines. Dordrecht, Kluwer Academic Publ., 2001, xvii+280 pp.
- Cheney E. W., Kincaid D. Numerical Mathematics and Computing. USA, Brooks Cole, 2013, 700 pp.
- Schoenberg I. J. Cardinal Spline Interpolation, CBMS-NSF Reg. Conf. Ser. Appl. Math. vol. 12. Philadelphia, Pa., SIAM, 1973, vi+125 pp.
- Sobolev S. L., Vaskevich V. L. The Theory of Cubature Formulas, Mathematics and Its Applications, vol. 415. Dordrecht, Kluwer Academic Publ., 1997, xxi+416 pp.
- Laurent P.-J. Approximation et Optimisation, Enseignement des Sciences, vol. 13. Paris, Hermann, 1972, xii+531 pp. (In French)
- Arcangéli R., López de Silanes M. C., Torrens J. J. Multidimensional Minimizing Splines. Theory and Applications. Boston, MA, Kluwer Academic Publ., 2004, xvi+261 pp.
- Schumaker L. L. Spline Functions: Basic Theory, Cambridge Mathematical Library. Cambridge, Cambridge Univ. Press, 2007, xv+582 pp.
- Holladay J. C. A smoothest curve approximation, Math. Tables Aids Comput., 1957, vol. 11, pp. 233–243. DOI: https://doi.org/10.2307/2001941.
- Schoenberg I. J. On equidistant cubic spline interpolation, Bull. Am. Math. Soc., 1971, vol. 77, pp. 1039–1043. DOI: https://doi.org/10.1090/S0002-9904-1971-12853-7.
- de Boor C. Best approximation properties of spline functions of odd degree, J. Math. Mech., 1963, vol. 12, pp. 747–749.
- Cabada A., Hayotov A. R., Shadimetov Kh. M. Construction of $D^m$-splines in $L^{(m)}_2 (0,1)$ space by Sobolev method, Appl. Math. Comput., 2014, vol. 244, pp. 524–551. DOI: https://doi.org/10.1016/j.amc.2014.07.033.
- Hayotov A. R., Milovanović G. V., Shadimetov Kh. M. Interpolation splines minimizing a semi-norm, Calcolo, 2014, vol. 51, no. 2, pp. 245–260. DOI: https://doi.org/10.1007/s10092-013-0080-x.
- Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A. Optimal interpolation formulas with derivative in the space $L^{(m)}_2 (0,1)$, Filomat, 2019, vol. 33, no. 17, pp. 5661–5675. DOI: https://doi.org/10.2298/FIL1917661S.
- Shadimetov Kh. M., Boltaev A. K. An exponential-trigonometric spline minimizing a seminorm in a Hilbert space, Adv. Differ. Equ., 2020, vol. 2020, 352. DOI: https://doi.org/10.1186/s13662-020-02805-8.
- Akhmedov D., Shadimetov Kh. Optimal quadrature formulas with derivative for Hadamard type singular integrals, AIP Conf. Proc., 2021, vol. 2365, 020020. DOI: https://doi.org/10.1063/5.0057124.
- Akhmedov D. Approximate solution of a class of singular integral equations of the first kind, AIP Conf. Proc., 2024, vol. 3004, 060033. DOI: https://doi.org/10.1063/5.0199828.
- Rasulov R., Mahkamova D. The norm of the error functional for the Euler–Maclaurin type quadrature formulas in the space $W^{(2k,2k-1)}_2 (0,1)$, AIP Conf. Proc., 2024, vol. 3004, 060042. DOI: https://doi.org/10.1063/5.0200255.
- Shadimetov Kh., Boltaev A. An exponential-trigonometric optimal interpolation formula, Lobachevskii J. Math., 2023, vol. 44, no. 10, pp. 4379–4392. DOI: https://doi.org/10.1134/S1995080223100359.
- Sobolev S. L. On interpolation of functions of $n$ variables, Sov. Math., Dokl., 1961, vol. 2, no. 4, pp. 343–346.
- Shadimetov Kh., Boltaev A., Parovik R. Optimization of the approximate integration formula using the discrete analogue of a high-order differential operator, Mathematics, 2023, vol. 11, no. 14, 3114. DOI: https://doi.org/10.3390/math11143114.
- Ghalichi S. S. S., Amirfakhrian M., Allahviranloo T. An algorithm for choosing a good shape parameter for radial basis functions method with a case study in image processing, Results Appl. Math., 2022, vol. 16, 100337. DOI: https://doi.org/10.1016/j.rinam.2022.100337.
