Model of bending of an orthotropic cantilever beam of Bernoulli-Euler under the action of unsteady thermomechanodiffusion loads
- Authors: Zemskov A.V.1,2, Le V.H.1, Serdiuk D.O.1
-
Affiliations:
- Moscow Aviation Institute (National Research University)
- Lomonosov Moscow State University, Institute of Mechanics
- Issue: Vol 28, No 4 (2024)
- Pages: 682-700
- Section: Mechanics of Solids
- URL: https://journal-vniispk.ru/1991-8615/article/view/311029
- DOI: https://doi.org/10.14498/vsgtu2112
- EDN: https://elibrary.ru/CVHDVM
- ID: 311029
Cite item
Full Text
Abstract
The paper examines the interaction of mechanical, temperature and diffusion fields during unsteady bending of a cantilevered beam. The mathematical formulation of the problem includes a system of equations of non-stationary bending vibrations of a Bernoulli-Euler beam taking into account heat and mass transfer, which is obtained from the general model of thermomechanical diffusion for continuum using the generalized principle of virtual displacements. It is assumed that the speed of propagation of thermal and diffusion disturbances is finite. Using the example of a cantilevered three-component beam made of an alloy of zinc, copper and aluminum, under the influence of a non-stationary load applied to the free end, the interaction of mechanical, temperature and diffusion fields was studied.
Full Text
##article.viewOnOriginalSite##About the authors
Andrei V. Zemskov
Moscow Aviation Institute (National Research University); Lomonosov Moscow State University, Institute of Mechanics
Author for correspondence.
Email: azemskov1975@mail.ru
ORCID iD: 0000-0002-2653-6378
SPIN-code: 9082-9823
Scopus Author ID: 56770970200
ResearcherId: J-3893-2013
http://www.mathnet.ru/person75409
Dr. Phys. & Math. Sci., Associate Professor; Professor; Dept. of Applied Software and Mathematical Methods1; Leading Researcher; Lab. of Dynamic Testing2
Russian Federation, 125993, Moscow, Volokolamskoe shosse, 4; 119192, Moscow, Michurinsky prospekt, 1Van H. Le
Moscow Aviation Institute (National Research University)
Email: vanhaovtl@gmail.com
ORCID iD: 0000-0002-0456-6429
https://www.mathnet.ru/person226526
Postgraduate Student; Dept. of Strength of Materials, Dynamics, and Strength of Machines
Russian Federation, 125993, Moscow, Volokolamskoe shosse, 4Dmitry O. Serdiuk
Moscow Aviation Institute (National Research University)
Email: d.serduk55@gmail.com
ORCID iD: 0000-0003-0082-1856
SPIN-code: 4515-5386
Scopus Author ID: 57217994555
ResearcherId: AAB-7446-2022
http://www.mathnet.ru/person128979
Cand. Techn. Sci., Associate Professor; Associate Professor; Dept. of Strength of Materials, Dynamics, and Strength of Machines
Russian Federation, 125993, Moscow, Volokolamskoe shosse, 4References
- Flyachok V. M., Shvets R. N. Theorems of the mechano-thermodiffusion theory of anisotropic shells, Mat. Metody Fiz.-Mekh. Polya, 1985, no. 21, pp. 32–37 (In Russian).
- Shvets R. N., Flyachok V. M. Equations of the mechano-thermodiffusion of anisotropic shells taking into account transverse deformations, Mat. Metody Fiz.-Mekh. Polya, 1984, no. 20, pp. 54–61 (In Russian).
- Shvets R. N., Flyachok V. M. Variational approach to the solution of dynamical problems of thermoelastic diffusion for anisotropic shells, Mat. Fiz. Nelin. Mekh., 1991, no. 16, pp. 39–43 (In Russian).
- Ravrik M. S. A variational mixed formula for contact problems of thermal diffusion theory of deformation of laminated shells, Mat. Metody Fiz.-Mekh. Polya, 1985, no. 22, pp. 40–44 (In Russian).
- Bhattacharya D., Kanoria M. The influence of two temperature generalized thermoelastic diffusion inside a spherical shell, Int. J. Eng. Technol. Res., 2014, vol. 2, no. 5, pp. 151–159.
- Ravrik M. S., Bichuya A. L. Axisymmetric stress state of a heated transversal-isotropic spherical shell with circular opening at diffusion saturation, Mat. Metody Fiz.-Mekh. Polya, 1983, no. 17, pp. 51–54 (In Russian).
- Aouadi M., Copetti M. I. M. Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory, ZAMM, 2016, vol. 96, no. 3, pp. 361–384. DOI: https://doi.org/10.1002/zamm.201400285.
- Aouadi M., Copetti M. I. M. A dynamic contact problem for a thermoelastic diffusion beam with the rotational inertia, Appl. Numer. Math., 2018, vol. 126, pp. 113–137. DOI: https://doi.org/10.1016/j.apnum.2017.12.007.
- Aouadi M., Copetti M. I. M. Exponential stability and numerical analysis of a thermoelastic diffusion beam with rotational inertia and second sound, Math. Comput. Simul., 2021, vol. 187, pp. 586–613. DOI: https://doi.org/10.1016/j.matcom.2021.03.026.
- Aouadi M., Miranville A. Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin–Pipkin’s model, Asymptotic Anal., 2015, vol. 95, no. 1–2, pp. 129–160. DOI: https://doi.org/10.3233/ASY-151330.
- Copetti M. I. M., Aouadi M. A A quasi-static contact problem in thermoviscoelastic diffusion theory, Appl. Numer. Math., 2016, vol. 109, pp. 157–183. DOI: https://doi.org/10.1016/j.apnum.2016.06.011.
- Shevchuk P. R., Shevchuk V. A. Mechanodiffusion effect in bending a two-layer bar, Mater. Sci., 1987, vol. 23, no. 6, pp. 604–608. DOI: https://doi.org/10.1007/BF01151899.
- Huang M., Wei P., Zhao L., Li Y. Multiple fields coupled elastic flexural waves in the thermoelastic semiconductor microbeam with consideration of small scale effects, Compos. Struct., 2021, vol. 270, 114104. DOI: https://doi.org/10.1016/j.compstruct.2021.114104.
- Kumar R., Devi S., Sharma V. Resonance of nanoscale beam due to various sources in modified couple stress thermoelastic diffusion with phase lags, Mech. Mech. Eng., 2019, vol. 23, no. 1, pp. 36–49. DOI: https://doi.org/10.2478/mme-2019-0006.
- Aouadi M. On thermoelastic diffusion thin plate theory, Appl. Math. Mech., 2015, vol. 36, no. 5, pp. 619–632. DOI: https://doi.org/10.1007/s10483-015-1930-7.
- Miranville A., Aouadi M. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory, Evol. Equ. Control Theory, 2015, vol. 4, no. 3, pp. 241–263. DOI: https://doi.org/10.3934/eect.2015.4.241.
- Mikolaychuk M. A., Knyazeva A. G., Grabovetskaya G. P., Mishin I. P. Research of the stress influence on the diffusion in the coating plate, PNRPU Mechanics Bulletin, 2012, no. 3, pp. 120–134 (In Russian). EDN: PETTDJ.
- Zemskov A. V., Le V. H., Serdyuk D. O. A model of bending of an orthotropic cantilevered Bernoulli–Euler beam under the action of nonstationary thermomechanodiffusion loads, In: Innovatsionnoe razvitie transportnogo i stroitel’nogo kompleksov [Innovative Development of Transport and Construction Complexes], vol. 2. Gomel’, Belarusian State University of Transport, 2023, pp. 90–92 (In Russian).
- Vol’fson E. F. To the 80th anniversary of the famous opening of V.S. Gorskii, Izv. Vyssh. Uchebn. Zaved. Chernaya Metallurgiya, 2016, vol. 59, no. 5, pp. 357–359 (In Russian). EDN: WBOQVZ. DOI: https://doi.org/10.17073/0368-0797-2016-5-357-359.
- Kukushkin S. A., Osipov A. V. The Gorsky effect in the synthesis of silicon-carbide films from silicon by topochemical substitution of atoms, Tech. Phys. Lett., 2017, vol. 43, no. 7, pp. 631–634. EDN: XNQWWZ. DOI: https://doi.org/10.1134/S1063785017070094.
- Knyazeva A. G. Vvedenie v termodinamiku neobratimykh protsessov. Lektsii o modeliakh [Introduction to Thermodynamics of Irreversible Processes. Lectures on Models]. Tomsk, Ivan Fedorov, 2014, 172 pp. (In Russian)
- Keller I. E., Dudin I. S. Mekhanika sploshnoi sredy. Zakony sokhraneniia [Continuum Mechanics. Conservation Laws]. PNIPU, Perm’, 2022, 142 pp. (In Russian)
- Zemskov A. V., Tarlakovskii D. V. Modelirovanie mekhanodiffuzionnykh protsessov v mnogokomponentnykh telakh s ploskimi granitsami [Modeling of Mechanodiffusion Processes in Multicomponent Bodies with Flat Boundaries]. Moscow, Fizmatlit, 2021, 288 pp. (In Russian)
- Zemskov A. V., Le V. H., Tarlakovskii D. V. Bernoulli–Euler beam unsteady bending model with consideration of heat and mass transfer, J. Appl. Comp. Mech., 2023, vol. 9, no. 1, pp. 168–180. DOI: https://doi.org/10.22055/jacm.2022.40752.3649.
- Zemskov A. V., Tarlakovskii D. V., Faykin G. M. Unsteady bending of the orthotropic cantilever Bernoulli–Euler beam with the relaxation of diffusion fluxes, ZAMM, 2022, vol. 102, no. 10, e202100107. DOI: https://doi.org/10.1002/zamm.202100107.
- Babichev A. P., Babushkina N. A., Bratkovskii A. M., et al. Fizicheskie velichiny [Physical Quantities]. Moscow, Energoatomizdat, 1991, 1232 pp. (In Russian)
- Hirano K., Cohen M., Averbach B. L., Ujiiye N. Self-diffusion in alpha iron during compressive plastic flow, Trans. Metall. Soc. AIME, 1963, vol. 227, pp. 950–957.
Supplementary files
