Hydrodynamics of an ideal incompressible fluid with a linear velocity field
- Authors: Zagitov R.R.1, Yulmukhametova Y.V.1
-
Affiliations:
- Mavlyutov Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences
- Issue: Vol 29, No 1 (2025)
- Pages: 37-54
- Section: Differential Equations and Mathematical Physics
- URL: https://journal-vniispk.ru/1991-8615/article/view/311030
- DOI: https://doi.org/10.14498/vsgtu2104
- EDN: https://elibrary.ru/JTFDKW
- ID: 311030
Cite item
Full Text
Abstract
In this study, a three-dimensional gas-dynamic model of an ideal incompressible fluid is proposed, where the solution is sought in the form of a linear velocity field with inhomogeneous deformation. The problem is formulated in both Eulerian and Lagrangian variables. Exact solutions are obtained for a special linearity matrix, generalizing previously known solutions. The equations of world lines for these solutions are derived, the trajectories of fluid particle motion are constructed, and the evolution of the initial spherical particle volume is investigated. The equations of constant pressure surfaces are presented and their time dynamics is analyzed. Special attention is paid to the analysis of particle motion in an ideal incompressible fluid and to obtaining new, more general solutions.
Full Text
##article.viewOnOriginalSite##About the authors
Ruslan R. Zagitov
Mavlyutov Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences
Author for correspondence.
Email: rr.zagitov.02@gmail.com
ORCID iD: 0009-0003-5480-9366
SPIN-code: 9640-3992
https://www.mathnet.ru/person228241
Research Engineer; Lab. of Differantial Equations of Mechanics
Russian Federation, 450054, Ufa, Oktabrya pr., 71Yulia V. Yulmukhametova
Mavlyutov Institute of Mechanics, Ufa Centre of the Russian Academy of Sciences
Email: yulmuhametova.yuv@ugatu.su
ORCID iD: 0000-0002-5127-4584
https://www.mathnet.ru/person65962
Cand. Phys. & Math. Sci., Associate Professor; Researcher; Lab. of Differantial Equations of Mechanics
Russian Federation, 450054, Ufa, Oktabrya pr., 71References
- Chandrasekhar S. Ellipsoidal Figures of Equilibrium. New Haven, London, Yale Univ. Press, 1969, ix+252 pp.
- Dirichlet G. L. Untersuchungen über ein Problem der Hydrodynamik, Nachrichten von der G. A. Universität und der Königl. Gesellschaft der Wissenschaften zu Göttingen, 1857, vol. 14, pp. 205–207.
- Dirichlet. G. L. Untersuchungen über ein Problem der Hydrodynamik, J. Reine Angew. Math., 1861, vol. 58, pp. 181–216. DOI: https://doi.org/10.1515/crll.1861.58.181.
- Dedekind R. Zusatz zu der vorstehenden Abhandlung, J. Reine Angew. Math., 1861, vol. 58, pp. 217–228. DOI: https://doi.org/10.1515/crll.1861.58.217.
- Riemann B. Ein Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gleichartigen Ellipsoides, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1861, vol. 9, pp. 3–36. http://eudml.org/doc/135728.
- Ovsyannikov L. V. A new solution of the hydrodynamic equations, Dokl. Akad. Nauk SSSR, 1956, vol. 111, no. 1, pp. 47–49 (In Russian).
- Dyson F. J. Dynamics of a spinning gas cloud, J. Math. Mech., 1968, vol. 18, pp. 91–101.
- Anisimov S. I., Lysikov Yu.I. Expansion of a gas cloud in vacuum, J. Appl. Math. Mech., 1970, vol. 34, no. 5, pp. 882–885. DOI: https://doi.org/10.1016/0021-8928(70)90070-5.
- Pukhnachev V. V. On the motion of a liquid ellipse, Dinamika Sploshnoi Sredy, 1978, no. 33, pp. 68–75 (In Russian). EDN: ZESVMD.
- Sideris T. C. Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Rational. Mech. Anal., 2017, vol. 225, pp. 141–176. DOI: https://doi.org/10.1007/s00205-017-1106-3.
- Hadžić M., Jang J. J. A class of global solutions to the Euler–Poisson system, Commun. Math. Phys., 2019, vol. 370, pp. 475–505. DOI: https://doi.org/10.1007/s00220-019-03525-1.
- Giron J. F. Ramsey S. D. Baty R. S. Nemchinov–Dyson solutions of the two-dimensional axisymmetric inviscid compressible flow equations, Phys. Fluids, 2020, vol. 32, no. 12, 127116. DOI: https://doi.org/10.1063/5.0032170.
- Hadžić M. Star dynamics: Collapse vs. expansion, Quart. Appl. Math., 2023, vol. 81, no. 2, pp. 329–365. DOI: https://doi.org/10.1090/qam/1638.
- Nikonorova R. F. Simple invariant solutions of the dynamic equation for a monatomic gas, Proc. Steklov Inst. Math. (Suppl.), 2023, vol. 321 (suppl. 1), pp. S186–S203. EDN: DTGOIQ. DOI: https://doi.org/10.1134/S0081543823030161.
- Panov A. V About regular expansion of a two-phase ball, Int. J. Non-Linear Mech., 2023, vol. 166, 104824. EDN: IVDJLH. DOI: https://doi.org/10.1016/j.ijnonlinmec.2024.104824.
- Lugovtsov B. A., Ovsyannikov L. V. Development of hydrodynamics at the Siberian Branch, Academy of Sciences of the USSR, J. Appl. Mech. Tech. Phys., 1987, vol. 28, no. 4, pp. 473–491. DOI: https://doi.org/10.1007/BF00916730.
- Ovsyannikov L. V. The plane problem of unsteady fluid motion with free boundaries, In: Dinamika sploshnoi sredy [Dynamics of Continuous Medium], Collection of Scientific Papers, vol. 338. Novosibirsk, 1971, pp. 22–26 (In Russian).
- Andreev V. K Vortex perturbations of the nonstationary motion of a liquid with a free boundary, J. Appl. Mech. Tech. Phys., 1975, vol. 16, no. 5, pp. 713–723. DOI: https://doi.org/10.1007/BF00854081.
- Nalimov V. I., Pukhnachev V. V. Neustanovivshiesia dvizheniia ideal’noi zhidkosti so svobodnoi granitsei [Unsteady Motions of Ideal Fluid with Free Boundary]. Novosibirsk, Novosibirsk State Univ., 1975, 173 pp. (In Russian)
- Nalimov V. I. A priori estimates of solutions of elliptic equations in the class of analytic functions, and their applications to the Cauchy–Poisson problem, Dokl. Akad. Nauk. SSSR, 1969, vol. 189, no. 1, pp. 45–48 (In Russian).
- Ovsyannikov L. V. On a class of unsteady motions of an incompressible fluid, In: Scientific Council on National Economic Applications of Explosion, Siberian Branch of the Academy of Sciences, Proceedings of the 5th Session. Frunze, Ilim, 1965, pp. 34–42 (In Russian).
- Lavrent’eva O. M. One class of motions of a fluid ellipsoid, J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 4, pp. 642–648. EDN: JJZCBW. DOI: https://doi.org/10.1007/BF00910007.
- Ovsyannikov L. V. Lektsii po osnovam gazovoi dinamiki [Lectures on Basic Gas Dynamics]. Moscow, Izhevsk, Institute of Computer Studies, 2003, 336 pp. (In Russian). EDN: QJPLMV.
- Andreev V. K., Pukhnachev V. V. Motion of a finite mass of fluid, J. Appl. Mech. Tech. Phys., 1979, vol. 20, no. 2, pp. 144–157. DOI: https://doi.org/10.1007/BF00910013.
- Gumerov I. I., Katashova A. A., Yulmukhametova Yu. V. Collapsing motions of a diatomic gas whose density depends only on time, Multiphase Systems, 2023, vol. 18, no. 1, pp. 9–16 (In Russian). EDN: CEHSLW. DOI: https://doi.org/10.21662/mfs2023.1.002.
- Urazbakhtina L. Z., Yulmukhametova Yu. V. A planar collapse of a gas with a linear velocity field, Trudy Inst. Mat. Mekh. UrO RAN, 2023, vol. 29, no. 2, pp. 207–216 (In Russian). EDN: DYBGCR. DOI: https://doi.org/10.21538/0134-4889-2023-29-2-207-216.
Supplementary files
