Some integral transformations of a Fox function with four parameters

Cover Page

Cite item

Full Text

Abstract

The study examines the Fox function with four parameters, which arises in the theory of degenerate differential equations with partial derivatives of fractional order. In terms of this function, explicit solutions to the first and second boundary value problems in a half-space were previously derived for the equation with the Bessel operator acting on the spatial variable and a fractional derivative with respect to time.
For the function under consideration, when two of the four parameters are dependent, a Laplace transform formula has been obtained, expressed in terms of the special MacDonald function. Additionally, integral transformation formulas have been derived, expressed through the generalized Wright function and the more general

About the authors

Fatima G. Khushtova

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS

Author for correspondence.
Email: khushtova@yandex.ru
ORCID iD: 0000-0003-4088-3621
SPIN-code: 6803-4959
Scopus Author ID: 57190074440
ResearcherId: K-1951-2018
http://www.mathnet.ru/person53181

Cand. Phys. & Math. Sci.; Researcher; Dept. of Fractional Calculus

Russian Federation, 360000, Nalchik, Shortanov st., 89 A

References

  1. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integrals and Series, vol. 3, More Special Functions. New York, Gordon and Breach Science Publ., 1990, 800 pp.
  2. Kilbas A. A., Saigo M. H-Transforms. Theory and Applications, Analytical Methods and Special Functions, vol. 9. Boca Raton, FL, Chapman & Hall/CRC, 2004, xii+389 pp.
  3. Mathai A. M., Saxena R. K., Haubold H. J. The H-Function. Theory and Applications. Dordrecht, Springer, 2010, xiv+268 pp. DOI: https://doi.org/10.1007/978-1-4419-0916-9.
  4. Nakhushev A. M. Drobnoe ischislenie i ego primenenie [Fractional Calculus and Its Applications]. Moscow, Fizmatlit, 2003, 271 pp. (In Russian)
  5. Khushtova F. G. First boundary-value problem in the half-strip for a parabolic-type equation with Bessel 0perator and Riemann Liouville derivative, Math. Notes, 2016, vol. 99, no. 6, pp. 916–923. EDN: WPITGJ. DOI: https://doi.org/10.1134/S0001434616050308.
  6. Kuznetsov D. S. Spetsial’nye funktsii [Special Functions]. Moscow, Vyssh. Shk., 1962, 248 pp. (In Russian)
  7. Erdélyi A, Magnus W., Oberhettinger F., Tricomi F. G. Higher Transcendental Functions, vol. I, Bateman Manuscript Project. New York, McGraw-Hill Book Co., 1953, xxvi+302 pp.
  8. Khushtova F. G. The second boundary-value problem in a half-strip for a parabolictype equation with Bessel operator and Riemann–Liouville partial derivative, Math. Notes, 2018, vol. 103, no. 3, pp. 474–482. EDN: XXXDBZ. DOI: https://doi.org/10.1134/S0001434618030136.
  9. Khushtova F. G. Differentiation formulas and the autotransformation formula for one particular case of the Fox function, Dokl. Adygsk. (Cherkessk.) Mezhdun. Akad. Nauk, 2020, vol. 20, no. 4, pp. 15–18 (In Russian). EDN: DKAMMT. DOI: https://doi.org/10.47928/1726-9946-2020-20-4-15-18.
  10. Khushtova F. G. On some properties of one special function, Dokl. Adygsk. (Cherkessk.) Mezhdun. Akad. Nauk, 2022, vol. 22, no. 2, pp. 34–40 (In Russian). EDN: LITQCZ. DOI: https://doi.org/10.47928/1726-9946-2022-22-2-34-40.
  11. Khushtova F. G. On the Mellin–Barnes integral representation of one special function, Izv. Kabard.-Balkarsk. Nauchn. Tsentra RAN, 2022, no. 6, pp. 19–27 (In Russian). EDN: TXVTRD. DOI: https://doi.org/10.35330/1991-6639-2022-6-110-19-27.
  12. Khushtova F. G. On some formulas for fractional integration of one Fox function with four parameters, Dokl. Adygsk. (Cherkessk.) Mezhdun. Akad. Nauk, 2022, vol. 22, no. 4, pp. 29–38 (In Russian). EDN: NUYVKX. DOI: https://doi.org/10.47928/
  13. -9946-2022-22-4-29-38.
  14. Khushtova F. G. To the properties of one Fox function, Vestn. KRAUNC. Fiz.-Mat. Nauki, 2023, vol. 42, no. 1, pp. 140–149 (In Russian). EDN: FXXPSA. DOI: https://doi.org/10.26117/2079-6641-2023-42-1-140-149.
  15. Voroshilov A. A. Erdélyi–Kober type fractional differentiation of the Fox H-function, Vestn. Grodnensk. Gos. Univ. im. Yanki Kupaly. Ser. 2. Mat. Fiz. Inform., Vychisl. Tekhn. Upravl., 2012, vol. 2, no. 129, pp. 11–20 (In Russian). EDN: TSVCDL.
  16. Avsievich A. V., Avsievich V. V. Laplace transform in fractional order automatic control systems, Nauka Obrazov. Transp., 2013, no. 1, pp. 195–199 (In Russian). EDN: SJGJKR.
  17. Avsievich A. V. The Laplace transform of special Wright functions, Vestn. Transp. Povolzh., 2013, no. 6, pp. 50–52 (In Russian). EDN: RVKGWX.
  18. Zaikina S. M. Generalized integral Laplace transform and its application to solving some integral equations, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1, pp. 19–24 (In Russian). EDN: TFGEOL. DOI: https://doi.org/10.14498/vsgtu1265.
  19. Qureshi M. I., Kabra D. K., Baboo M. S. Laplace transforms of multiple hypergeometric functions using Mellin–Barnes type contour integration, Asia Pac. J. Math., 2015, vol. 2, no. 2, pp. 94–107.
  20. Skoromnik O. V. Integral transforms with the confluent hyperdeometric function of Kummer and the cut Bessel function in the kernels and integral equations of the first kind in the space of summable functions, Vestn. Polotsk. Gosud. Univ. Ser. C. Fundament. Nauki, 2016, no. 12, pp. 104–110 (In Russian). EDN: XRFOMX.
  21. Karp D., Prilepkina E. G. Applications of the Stieltjes and Laplace transform representations of the hypergeometric functions, Integral Transforms Spec. Funct., 2017, vol. 28, no. 10, pp. 710–731. DOI: https://doi.org/10.1080/10652469.2017.1351964.
  22. Skoromnik O. V. Two-dimentional integral transform with the H-function in the kernel in the space of summable functions, Vestn. Polotsk. Gosud. Univ. Ser. C. Fundament. Nauki, 2018, no. 4, pp. 187–193 (In Russian). EDN: UXBAMJ.
  23. Papkovich M. V., Skoromnik O. V. Two-dimentional integral transform with the meijer G-function in the kernel in the space of summable functions, Vestn. Polotsk. Gosud. Univ. Ser. C. Fundament. Nauki, 2019, no. 4, pp. 131–136 (In Russian). EDN: HFPVNO.
  24. Mohammed A. O., Rakha M. A., Awad M. M., Rathie A. K. On several new Laplace transforms of generalized hypergeometric functions $_2F_2(x)$, Bol. Soc. Parana. Mat. (3), 2021, vol. 39, no. 4, pp. 97–109. DOI: https://doi.org/10.5269/bspm.42207.
  25. Katrakhov V. V., Sitnik S. M. The transmutation method and boundary-value problems for singular elliptic equations, Contemporary Mathematics. Fundamental Directions, 2018, vol. 64, no. 2, pp. 211–426 (In Russian). EDN: AXVBAI. DOI: https://doi.org/10.22363/2413-3639-2018-64-2-211-426.
  26. Sitnik S. M., Shishkina E. L. Metod operatorov preobrazovaniia dlia differentsial’nykh uravnenii s operatorami Besselia [Method of Transformation Operators for Differential Equations with Bessel Operators]. Moscow, Fizmatlit, 2019, 224 pp. (In Russian). EDN: YGUEZW.
  27. Transmutation Operators and Applications, Trends in Mathematics, eds. V. V. Kravchenko, S. M. Sitnik. Cham, Birkhäuser, 2020, xvii+686 pp. DOI: https://doi.org/10.1007/978-3-030-35914-0.
  28. Lebedev N. N. Special Functions and Their Applications. Englewood Cliffs, N.J., Prentice Hall, 1965, xii+308 pp.
  29. Marichev O. I. Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables, Ellis Horwood Series in Mathematics and its Applications. Chichester, Ellis Horwood Limited, 1983, 336 pp.
  30. Wright E. M. On the coefficients of power series having exponential singularities, J. Lond. Math. Soc., 1933, vol. s1-8, no. 1, pp. 71–79. DOI: https://doi.org/10.1112/jlms/s1-8.1.71.
  31. Wright E. M. The generalized Bessel function of order greater than one, Q. J. Math., 1940, vol. os-11, no. 1, pp. 36–48. DOI: https://doi.org/10.1093/qmath/os-11.1.36.
  32. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integrals and Series, vol. 1, Elementary Functions. New York-London, Gordon and Breach Science Publishers, 1986, 798 pp.
  33. Pskhu A. V. Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Fractional Partial Differential Equations]. Moscow, Nauka, 2005, 199 pp. (In Russian). EDN: QJPLZX.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».