Development and comparative analysis of mathematical models for the functioning of the regional power system of the Samara region

Cover Page

Cite item

Full Text

Abstract

Systematic research into the operations of the regional power system aimed at improving the efficiency of energy complex management, taking into account the contribution of utilized resources, is fundamentally impossible without the enhancement of mathematical models and methods for their identification based on statistical data.
This article presents the results of an analysis of a well-known mathematical description of the functioning of the regional power system, highlighting significant shortcomings that negatively impact both the reliability of assessments of key performance indicators of the energy complex and the accuracy of forecasts made based on the constructed model.
The study examines and systematizes various three-factor regression models and covariance-stationary time series models based on linear and nonlinear regression into three main groups. Algorithms for numerical methods of least squares estimation of the parameters of these models based on observational results are described.
Results of mathematical modeling of the dynamics of energy system output based on statistical data published in the annual reports of regional ministries and energy companies are provided. A statistical analysis of the obtained results is conducted. A comparative analysis of the developed mathematical models based on forecast error assessment allowed for the selection of the most effective mathematical model with minimal forecasting error from the considered set of models over a time period ranging from one to five years.

About the authors

Vladimir E. Zoteev

Samara State Technical University

Email: zoteev.ve@samgtu.ru
ORCID iD: 0000-0001-7114-4894
SPIN-code: 8547-1223
Scopus Author ID: 16456013300
ResearcherId: D-8245-2014
http://www.mathnet.ru/person38585

Dr. Techn. Sci., Professor; Professor; Dept. of of Applied Mathematics and Computer Science

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Lyaysan A. Sagitova

Samara State Technical University

Email: l0410@mail.ru
ORCID iD: 0000-0002-0833-983X
SPIN-code: 5588-4106
https://www.mathnet.ru/person213377

Senior Lecturer; Dept. of Heat and Gas Supply and Ventilation

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Anna A Gavrilova

Samara State Technical University

Author for correspondence.
Email: a.a.gavrilova@mail.ru
ORCID iD: 0000-0001-6598-6518
https://www.mathnet.ru/person41413

Cand. Techn. Sci., Associate Professor; Associate Professor; Dept. of Control and System Analysis of Thermal Power and Sociotechnical Complexes

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

References

  1. Gavrilova A. A., Capenko M. V. Synthesis of mathematical models of the regional energy system as multidimensional production functions, Vestn. Samar. Gos. Tekhn. Univ., Ser. Techn. Nauki, 2002, no. 14, pp. 126–192 (In Russian).
  2. Kolmykov D. S., Gavrilova A. A. Model analysis of the operating efficiency of regional energy production, In: Proceedings of the Third All-Russian Scientific Conference (29–31 May 2006). Part 2, Matem. Mod. Kraev. Zadachi. Samara, Samara State Technical Univ., 2006, pp. 93–96 (In Russian).
  3. Diligensky N. V., Gavrilova A. A., Salov A. G., Gavrilov V. K. Modeling performance analysis of combined generation of heat and power energy of regional power system, Izv. Vyssh. Uchebn. Zaved. Severo-Kavkazsk. Region. Tekhn. Nauki, 2008, no. 5, pp. 37–40 (In Russian). EDN: JUPXNJ.
  4. Salov A. G., Gavrilova A. A. System analysis and modeling of the activities of energy generating enterprises in order to assess the efficiency of their functioning in the context of the formation of market relations, Vestn. Saratov. Gos. Tekhn. Univ., 2008, vol. 1, no. 1, pp. 86–91 (In Russian). EDN: JUIJHL.
  5. Salov A. G., Gavrilova A. A., Ivanova D. V. Study of the economic characteristics of the regional industrial complex using statistical and modeling analysis methods, Nauchnoe Obozrenie, 2015, no. 15, pp. 327–332 (In Russian). EDN: UXSICN.
  6. Salov A. G., Gavrilova A. A., Knyazev P. A., Kruglov V. A. Simulation model of region energy system on the base of three-factor production function, Urban Construction and Architecture, 2016, no. 3, pp. 140–145 (In Russian). EDN: WWOJDJ. DOI: https://doi.org/10.17673/Vestnik.2016.03.23.
  7. Ivanova D. V., Salov A. G., Gavrilova A. A. Control algorithms development for manufacturing and economic systems activity, J. Phys.: Conf. Ser., 2018, vol. 1111, 012073. EDN: VZIFDX. DOI: https://doi.org/10.1088/1742-6596/1111/1/012073.
  8. Gavrilova A. A., Salov A. G. Sistemnaia metodologiia analiza i modelirovaniia energoeffektivnosti generiruiushchikh kompanii [System Methodology for Analysis and Modeling of Energy Efficiency of Generating Companies]. Samara, Nauchno-tekhnicheskii Tsentr, 2021, 277 pp. (In Russian). EDN: ZZZXNK.
  9. Abramov A. P., Bessonov V. A., Nikiforov L. T., Sviridenko K. S. Issledovanie dinamiki makroekonomicheskikh pokazatelei metodom proizvodstvennykh funktsii [Study of the Dynamics of Macroeconomic Indicators by the Production Functions Method]. Moscow, Computing Center of the USSR Academy of Sciences, 1987, 62 pp. (In Russian)
  10. Zamkov O. O., Tolstopiatenko A. V., Cheremnykh Yu. N. Matematicheskie metody v ekonomike Mathematical Methods in Economics. Moscow, Moscow State Univ., 1997, 368 pp. (In Russian)
  11. Zoteev V. E., Bashkinova E. V., Starokvasheva P. V. Mathematical modeling of the functioning of the energy system of the Samara region, In: Perspektivnye informatsionnye tekhnologii (PIT 2020), Proceedings of the International Scientific and Technical Conference. Samara, Samar. Nauchn. Tsentr RAN, 2020, pp. 361–365 (In Russian). EDN: KVSGXT.
  12. Vuchkov I., Boyadjieva L., Solakov O. Prikladnoi lineinyi regressionnyi analiz [Applied Linear Regression Analysis]. Moscow, Finansy i Statistika, 1987, 238 pp. (In Russian)
  13. Draper N. R., Smith H. Applied Regression Analysis, Wiley Series in Probability and Statistics. New York, John Wiley and Sons, 1998, xvii+706 pp. DOI: https://doi.org/10.1002/9781118625590.
  14. Demidenko E. Z. Lineinaia i nelineinaia regressii [Linear and Nonlinear Regression]. Moscow, Finansy i Statistika, 1981, 302 pp. (In Russian)
  15. Seber G. A. F., Lee A. J. Linear Regression Analysis, Wiley Series in Probability and Statistics. Hoboken, NJ, Wiley, 2003, xvi+557 pp.
  16. Box G. E. P., Jenkins G. M.; Reinsel G. C., Ljung G. M. Time Series Analysis. Forecasting and Control, Wiley Series in Probability and Statistics. Hoboken, NJ, John Wiley and Sons, 2016, 712 pp.
  17. Anderson T. W. The Statistical Analysis of Time Series, Wiley Classics Library. Chichester, John Wiley and Sons, 1994, xiv+704 pp.
  18. Kendall M. G., Stuart A. The Advanced Theory of Statistics, vol. 3, Design and Analysis, and Time-Series. London, Charles Griffin, 1976, x+585 pp.
  19. Otnes R. K., Enochson L. Applied Time Series Analysis, vol. 1, Basic Techniques. New York, John Wiley and Sons, 1978, xiv+449 pp.
  20. Kashyap R. L., Ramachandra Rao A. Dynamic Stochastic Models from Empirical Data, Mathematics in Science and Engineering, vol. 122. New York, Academic Press, 1976, xvi+334 pp. DOI: https://doi.org/10.1016/s0076-5392(08)x6016-3.
  21. Durbin J., Watson G. S Testing for serial correlation in least squares regression: I, Biometrika, 1950, vol. 37, no. 3/4, pp. 409–428. DOI: https://doi.org/10.2307/2332391.
  22. Granovsky V. A., Siraya T. N. Metody obrabotki eksperimental’nykh dannykh pri izmereniiakh [Methods of Processing Experimental Data in Measurements]. Leningrad, Energoatomizdat, 1990, 288 pp. (In Russian)
  23. Zoteev V. E. A numerical method of nonlinear estimation based on difference equations, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 4, pp. 669–701 (In Russian). EDN: YSDYZN. DOI: https://doi.org/10.14498/vsgtu1643.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Plots of functions describing the dynamics of production output in energy industries: points — statistical data on production output; solid line — data based on models 4 and 5 (Eqs. (10) and (11)); dashed line — data based on models 6–9 (Eqs. (19)–(22))

Download (102KB)
3. Figure 2. Relative forecast error $\delta$ (%) and relative limit forecast error $\Delta$ (%) of production output in energy industries calculated by models 2 and 7

Download (240KB)

Copyright (c) 2024 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».