Mathematical modeling of gas oscillations in a methane pyrolysis reactor
- Authors: Kudinov I.V.1, Trubitsyn K.V.1, Eremin A.V.1, Dolgikh V.D.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 28, No 4 (2024)
- Pages: 773-789
- Section: Mathematical Modeling, Numerical Methods and Software Complexes
- URL: https://journal-vniispk.ru/1991-8615/article/view/311045
- DOI: https://doi.org/10.14498/vsgtu2115
- EDN: https://elibrary.ru/SRKXEK
- ID: 311045
Cite item
Full Text
Abstract
A mathematical model of gas oscillations induced by external harmonic loading has been developed, taking into account spatiotemporal nonlocality. The model is based on the equilibrium (motion) equation and a modified Hooke’s law, which incorporates relaxation terms accounting for the mean free path and time of microparticles (electrons, atoms, molecules, ions, etc.).
Numerical studies of the model have shown that resonance occurs when the natural frequency of gas oscillations coincides with the frequency of the external load. This resonance is characterized by a sharp increase in the amplitude of oscillations, which is limited by the gas friction coefficient. When the frequency of the external load is close to the natural frequency of gas oscillations, bifurcation-flutter oscillations (beats) are observed, accompanied by periodic increases and decreases in the oscillation amplitude at each point of the spatial variable. In this case, the gas oscillations exhibit an infinite
number of amplitudes and frequencies.
Periodic variations in gas displacement and pressure, ranging from zero to a certain maximum value and propagating along the length of the methane pyrolysis reactor, contribute to the cleaning of its internal surfaces from loose carbon deposits. The carbon removed from the reactor walls accumulates in the lower part between two gas-tight shut-off valves, allowing for its removal without interrupting the pyrolysis process. This model can be useful for optimizing reactor cleaning processes and improving the efficiency of methane pyrolysis.
Full Text
##article.viewOnOriginalSite##About the authors
Igor V. Kudinov
Samara State Technical University
Author for correspondence.
Email: igor-kudinov@bk.ru
ORCID iD: 0000-0002-9422-0367
https://www.mathnet.ru/person44183
Dr. Techn. Sci., Professor; Head of the Department; Dept. of Physics
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244Konstantin V. Trubitsyn
Samara State Technical University
Email: tef-samgtu@yandex.ru
ORCID iD: 0000-0003-1888-2905
https://www.mathnet.ru/person202960
Cand. Econ. Sci., Associate Professor; Dean; Faculty of Thermal Power Engineering
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244Anton V. Eremin
Samara State Technical University
Email: a.v.eremin@list.ru
ORCID iD: 0000-0002-2614-6329
https://www.mathnet.ru/person64230
Dr. Techn. Sci, Associate Professor; Head of Department; Dept. of Industrial Thermal Power Engineering
Russian Federation, 443100, Samara, Molodogvardeyskaya str., 244Victor D. Dolgikh
Samara State Technical University
Email: torressva12@yandex.ru
ORCID iD: 0000-0003-1505-3810
https://www.mathnet.ru/person225981
Assistant; Dept. of Physics
Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244References
- Baranov N. N. Netraditsionnye istochniki i metody preobrazovaniia energii [Unconventional Sources and Methods of Energy Conversion]. Moscow, Moscow University of Economics, 2012, 384 pp. (In Russian). EDN: UOOWV.
- Fortov V. E., Popel O. S. Energetika v sovremennom mire [Energetics in the ModernWorld]. Moscow, Intellekt, 2011, 168 pp. (In Russian). EDN: QMLDHF.
- Dagle R. A, Dagle V. L., Bearden M. D., et al. An overview of natural gas conversion technologies for co-production of hydrogen and value added solid carbon products, OSTI Technical Report. Washington, U.S. Department of Energy, 2017. DOI: https://doi.org/10.2172/1411934.
- Kudinov I. V., Pimenov A. A., Mikheeva G. V. Modeling of the thermal decomposition of methane and the formation of solid carbon particles, Petroleum Chem., 2020, vol. 60, no. 11, pp. 1239–1243. EDN: PBZZQR. DOI: https://doi.org/10.1134/S0965544120110122.
- Kudinov I. V., Pimenov A. A., Kryukov Y. A., Mikheeva G. V. A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin, Int. J. Hydrogen Energy, 2021, vol. 46, no. 17, pp. 10183–10190. EDN: BPAKJI. DOI: https://doi.org/10.1016/j.ijhydene.2020.12.138.
- Kudinov I. V., Vellikanova Yu. V., Nenashev M. V., et al. Methane pyrolysis in molten media for hydrogen production: A review of current advances, Petr. Chem., 2023, vol. 63, no. 9, pp. 1017–1026. EDN: ANDKEP. DOI: https://doi.org/10.1134/S0965544123080078.
- Machhammer O., Bode A., Hormuth W. Financial and ecological evaluation of hydrogen production processes on large scale, Chem. Eng. Technol., 2016, vol. 39, no. 6, pp. 1185–1193. DOI: https://doi.org/10.1002/ceat.201600023.
- Leal Perez B., Medrano Jiménez J. A., Bhardwaj R., et al. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment, Int. J. Hydrogen Energy, 2021, vol. 46, no. 7, pp. 4917–4935. DOI: https://doi.org/10.1016/j.ijhydene.2020.11.079.
- Zhao Q., Wang Y., Wang Y.N., et al. Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: Effect of H2O/CH4 ratio on carbon Q5 deposition, Int. J. Hydrogen Energy, 2020, vol. 45, no. 28, pp. 14281–14292. DOI: https://doi.org/10.1016/j.ijhydene.2020.03.112.
- Steinberg M. The Carnol process for CO2 mitigation from power plants and the transportation sector, Energy Conv. Manag., 1996, vol. 37, no. 6–8, pp. 843–848. DOI: https://doi.org/10.1016/0196-8904(95)00266-9.
- Steinberg M. Fossil fuel decarbonization technology for mitigating global warming, Int. J. Hydrogen Energy, 1999, vol. 24, no. 8, pp. 771–777. DOI: https://doi.org/10.1016/S0360-3199(98)00128-1.
- Babakov I. M. Teoriia kolebanii [Theory of Oscillations]. Moscow, Drofa, 2004, 592 pp. (In Russian). EDN: QJNGJV.
- Kabisov K. S., Kamalov T. F., Lurie V. A. Kolebaniia i volnovye protsessy [Oscillations and Wave Processes]. Moscow, KomKniga, 2010, 360 pp. (In Russian). EDN: QJOEGP.
- Kudinov I. V. Development of mathematical models and research strongly nonequilibrium developments taking into account space-time nonlocality, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 1, pp. 116–152 (In Russian). EDN: UTXSMC. DOI: https://doi.org/10.14498/vsgtu1566.
- Sobolev S. L. Local non-equilibrium transport models, Phys. Usp., 1997, vol. 40, no. 10, pp. 1043–1053. DOI: https://doi.org/10.1070/PU1997v040n10ABEH000292.
- Sobolev S. L. Transport processes and traveling waves in systems with local nonequilibrium, Phys. Usp., 1991, vol. 34, no. 3, pp. 217–229. DOI: https://doi.org/10.1070/PU1991v034n03ABEH002348.
- Loitsiansky L. G. Mekhanika zhidkosti i gaza [Mechanics of Fluid and Gas]. Moscow, Drofa, 2003, 840 pp. (In Russian)
- Filin A. P. Prikladnaia mekhanika tverdogo deformiruemogo tela [Applied Mechanics of Deformable Solid Body], vol. 1. Moscow, Nauka, 1976, 353 pp. (In Russian)
- Kudinov I. V., Eremin A. V., Kudinov V. A., et al. Mathematical model of damped elastic rod oscillations with dual-phase-lag, Int. J. Solids Struct., 2020, vol. 200–201, pp. 231–241. EDN: LVYXJK. DOI: https://doi.org/10.1016/j.ijsolstr.2020.05.018.
- Parshakov A. N. Fizika lineinykh i nelineinykh volnovykh protsessov v izbrannykh zadachakh. Elektromagnitnye i akusticheskie volny [Physics of Linear and Nonlinear Wave Processes in Selected Problems. Electromagnetic and Acoustic Waves]. Moscow, Intellekt, 2014, 144 pp. (In Russian)
Supplementary files
