Active adaptation of a distributed multi-sensor filtering system
- Authors: Semushin I.V.1, Tsyganova J.V1
-
Affiliations:
- Ulyanovsk State University
- Issue: Vol 23, No 4 (2019)
- Pages: 724-743
- Section: Articles
- URL: https://journal-vniispk.ru/1991-8615/article/view/34669
- ID: 34669
Cite item
Full Text
Abstract
Our findings follow:
– Stretching one-step prediction and measurement update operations are wise to perform at the Decision Making Center; computation operations aimed to minimize the instrumental performance index are to be done in this place, too.
– Uncompounded procedures of adaptive data scaling are advisable to complete at the sensors' location in the network.
– Adaptation algorithms may be implemented based for filter structures taken in different forms: Kolmogorov–Wiener, Kalman covariance, or Kalman information forms.
– Computational operations for minimizing the instrumental performance index would be beneficial to develop as versions to implement the modern practical optimization methods of different levels of complexity.
Full Text
##article.viewOnOriginalSite##About the authors
Innokentiy Vasilievich Semushin
Ulyanovsk State UniversityDoctor of technical sciences, Professor
Julia V Tsyganova
Ulyanovsk State University
Email: jvt.ulsu@gmail.com, tsyganovajv@gmail.com
Doctor of physico-mathematical sciences, Associate professor
References
- Катковник В. Я., Полуэктов Р. А., Многомерные дискретные системы управления, Наука, М., 1966, 416 с.
- Балакришнан А., Теория фильтрации Калмана, Мир, М., 1988, 168 с.
- Maybeck P. S., Stochastic Models, Estimation, and Control, v. 1, Mathematics in Science and Engineering, 141, Academic Press, Inc, New York, 1979, xix+423 pp.
- Фомин В. Н., Рекуррентное оценивание и адаптивная фильтрация, Наука, М., 1984, 288 с.
- Speyer J., "Computation and transmission requirements for a decentralized linear-quadratic-Gaussian control problem", IEEE Trans. Automatic Control, 24:2 (1979), 266-269
- Rao B. S., Durrant-Whyte H. F., "Fully decentralised algorithm for multisensor Kalman filtering", IEE Proc.-Control Theory Appl., 138:5 (1991), 413-420
- Olfati-Saber R., "Distributed Kalman filtering and sensor fusion in sensor networks", Networked Embedded Sensing and Control, Lecture Notes in Control and Information Science, 331, eds. P. J. Antsaklis, P. Tabuada, Springer, Berlin, Heidelberg, 2006, 157-167
- Alriksson P., Rantzer A., "Model based information fusion in sensor networks", IFAC Proceedings Volumes, 41:2 (2008), 4150-4155
- Rao B. S. Y., Durrant-Whyte H. F., Sheen J. A., "A fully decentralized multi-sensor system for tracking and surveillance", Int. J. Robot. Res., 12:1 (1993), 20-44
- Mahmoud M. S., Khalid H. M., "Distributed Kalman filtering: a bibliographic review", IET Control Theory and Applications, 7:4 (2013), 483-501
- Marelli D., Zamani M., Fu M., Ninness B., "Distributed Kalman filter in a network of linear systems", Systems Control Letters, 116:6 (2018), 71-77
- Wu Z., Fu M., Xu Yo., Lu R., "A distributed Kalman filtering algorithm with fast finite-time convergence for sensor networks", Automatica, 95:9 (2018), 63-72
- Dormann K., Noack B., Hanebeck U. D., "Optimally distributed Kalman filtering with data-driven communication", Sensors, 18:4 (2018), 1034
- Badyn M. H., Mesbahi M., "Large-scale distributed Kalman filtering via an optimization approach", IFAC PapersOnLine, 50:1 (2017), 10742-10747
- Govaers F., "Distributed Kalman filter (Chapter 13)", Kalman Filters - Theory for Advanced Applications, eds. Ginalber Luiz de Oliveira Serra, IntechOpen, London, 2018, 253-272
- Semushin I. V., "The APA based time-variant system identification", 53rd IEEE Conference on Decision and Control (15-17 December 2014, Los Angeles, CA, USA), 2014, 4137-4141
- Fletcher R., Practical Methods of Optimization, John Wiley & Sons Ltd, Chichester, Great Britain, xiv+436 pp.
- Semushin I. V., "Adaptation in stochastic dynamic systems - Survey and new results II", Int. J. Communications, Network, and System Sciences, 4:4 (2011), 266-285
- Цыганова Ю. В., Ортогонализованные блочные методы для параметрической идентификации дискретных линейных стохастических систем, Дис. … д-ра физ.-мат. наук: 05.13.18, Ульяновский государственный университет, Ульяновск, 2017, 400 с.
Supplementary files
