Об одной задаче для обобщенного уравнения Буссинеска–Лява

ТОМ 23, №4 (2019)
  • Авторы: Жегалов В.И.1
  • Учреждения:
    1. Институт математики и механики им. Н. И. Лобачевского Казанского (Приволжского) федерального университета
  • Выпуск: Том 23, № 4 (2019)
  • Страницы: 771-776
  • Раздел: Статьи
  • URL: https://journal-vniispk.ru/1991-8615/article/view/34673
  • ID: 34673

Цитировать

Полный текст

Аннотация

Для уравнения четвертого порядка с двумя независимыми переменнымирассматривается вариант задачи Гурса с данными на двух пересекающихся характеристиках,включающий в себя не только построение искомой функции, но и определение коэффициентов уравнения.Таким образом, речь идет об обратной задаче с определением коэффициентов уравнения.Предложена методика построения условий, обеспечивающих выделение бесконечного числа наборов уравнений данного вида,для которых рассматриваемая задача разрешима в квадратурах. Вместо введения дополнительных граничных условий предлагаются ограничения на структуру уравнения,связанные с возможностями его факторизации.

Об авторах

Валентин Иванович Жегалов

Институт математики и механики им. Н. И. Лобачевского Казанского (Приволжского) федерального университета

Email: Valentin.Zhegalov@kpfu.ru
доктор физико-математических наук, профессор

Список литературы

  1. Солдатов А. П., Шхануков М. Х., "Краевые задачи с общим нелокальным условием А. А. Самарского для псевдогиперболических уравнений высокого порядка", Докл. АН СССР, 297:3 (1987), 547-552
  2. Сердюкова С. И., "Экзотическая асимптотика для линейного гиперболического уравнения", Докл. РАН, 389:3 (2003), 305-309
  3. Жегалов В. И., Миронов А. Н., Дифференциальные уравнения со старшими частными производными, Казанск. матем. об-во, Казань, 2001, 226 с.
  4. Жегалов В. И., Миронов А. Н., Уткина Е. А., Уравнения с доминирующей частной производной, Казанск. ун-т, Казань, 2014, 385 с.
  5. Миронов А. Н., "О методе Римана решения задачи Коши", Изв. вузов. Матем., 2005, № 2, 34-44
  6. Миронов А. Н., Миронова Л. Б., "Об инвариантах Лапласа для обобщенного уравнения Буссинеска-Лява", Диффер. уравн., 51:1 (2015), 131-135
  7. Anikonov Yu. E., Belov Yu. Ya., "Determining two unknown coefficients of parabolic type equation", J. Inverse Ill-posed Probl., 9:5 (2001), 469-487
  8. Anikonov Yu. E., "Inverse problems and classes of solutions of evolution equations", J. Inverse Ill-posed Probl., 11:1 (2003), 1-26
  9. Алексеев Г. В., Вахитов И. С., Соболева О. В., "Оценки устойчивости в задачах идентификации для уравнения конвекции-диффузии-реакции", Ж. вычисл. матем. и матем. физ., 52:12 (2012), 2190-2205
  10. Камынин В. Л., "Обратная задача одновременного определения правой части и младшего коэффициента в параболическом уравнении со многими пространственными переменными", Матем. заметки, 97:3 (2015), 368-381
  11. Кожанов А. И., "Параболические уравнения с неизвестными коэффициентами, зависящими от времени", Ж. вычисл. матем. и матем. физ., 57:6 (2017), 961-972
  12. Сабитов К. Б., "Начально-граничная и обратные задачи для неоднородного смешанного параболо-гиперболического уравнения", Матем. заметки, 102:3 (2017), 415-435
  13. Сабитов К. Б., Функциональные, дифференциальные и интегральные уравнения, Высш. шк., М., 2005, 670 с.
  14. Жегалов В. И., Сарварова И. М., "К условиям разрешимости задачи Гурса в квадратурах", Изв. вузов. Матем., 2013, № 3, 68-73
  15. Жегалов В. И., Созонтова Е. А., "Дополнение к случаям разрешимости задачи Гурса в квадратурах", Диффер. уравн., 53:2 (2017), 270-273

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».