On quadratic corrections of constitutive equations for a hemitropic micropolar elastic solid
- Authors: Murashkin E.V.1, Radayev Y.N.1
-
Affiliations:
- Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
- Issue: Vol 29, No 2 (2025)
- Pages: 274-293
- Section: Mechanics of Solids
- URL: https://journal-vniispk.ru/1991-8615/article/view/349671
- DOI: https://doi.org/10.14498/vsgtu2144
- EDN: https://elibrary.ru/DZUMDJ
- ID: 349671
Cite item
Full Text
Abstract
In the present paper, cubic approximations of energy forms for the potentials of force and couple stresses in hemitropic micropolar elastic solids are proposed and discussed. H/E/A-representations for these potentials were introduced in earlier studies. However, the A-form allows us to obtain a cubic approximation for the stress potential in the form of a polynomial combination of invariants, comprising integer powers of individual and joint base rational algebraic invariants and pseudoinvariants. Some of these pseudoinvariants have “pseudo-tensor pre-images” that are sensitive to mirror reflections and inversions of three-dimensional space.
Within the framework of this study, a complete irreducible set of individual and joint linear, quadratic, and cubic integer rational algebraic invariants is obtained for a set consisting of the symmetric and antisymmetric parts of the asymmetric strain tensor and the wryness tensor. A cubic energy form for a hemitropic micropolar solid is determined, and a complete set of 37 constitutive moduli is specified. Additionally, constitutive equations for force and couple stresses in arbitrary curvilinear coordinates are derived, including quadratic corrections.
Full Text
##article.viewOnOriginalSite##About the authors
Evgenii V. Murashkin
Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Author for correspondence.
Email: murashkin@ipmnet.ru
ORCID iD: 0000-0002-3267-4742
Scopus Author ID: 12760003400
ResearcherId: F-4192-2014
https://www.mathnet.ru/rus/person53045
Cand. Phys. & Math. Sci., PhD, MD, Senior Researcher, Lab. of Modeling in Solid Mechanics
Russian Federation, 119526, Moscow, pr. Vernadskogo, 101–1Yuri N. Radayev
Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
Email: radayev@ipmnet.ru
ORCID iD: 0000-0002-0866-2151
Scopus Author ID: 6602740688
ResearcherId: J-8505-2019
https://www.mathnet.ru/rus/person39479
D.Sc. (Phys. & Math. Sci.), Ph.D., M.Sc., Professor, Leading Researcher, Lab. of Modeling in Solid Mechanics
Russian Federation, 119526, Moscow, pr. Vernadskogo, 101–1References
- Cosserat E., Cosserat F. Théorie des corps déformables. Paris, Herman et Fils, 1909, vi+226 pp.
- Kessel S. Lineare Elastizitätstheorie des anisotropen Cosserat-Kontinuums, Abh. Braunschw. Wiss. Ges., 1964, vol. 16, pp. 1–22. DOI: https://doi.org/10.24355/dbbs.084-201301181342-0.
- Neuber H. On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua, In: Applied Mechanics; eds. H. Görtler. Berlin, Heidelberg, Springer, 1966, pp. 153–158. DOI: https://doi.org/10.1007/978-3-662-29364-5_16.
- Nowacki W. Theory of Micropolar Elasticity, Course held at the Department for Mechanics of Deformable Bodies, July 1970, Udine, International Centre for Mechanical Sciences. Courses and Lectures, vol. 25. Wien, New York, Springer, 1972, 286 pp. DOI: https://doi.org/10.1007/978-3-7091-2720-9.
- Dyszlewicz J. Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics, vol. 15. Berlin, Springer, 2004, xv+356 pp. DOI: https://doi.org/10.1007/978-3-540-45286-7.
- Besdo D. Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums, Acta Mech., 1974, vol. 20, no. 1, pp. 105–131. DOI: https://doi.org/10.1007/BF01374965.
- Nowacki W. Theory of Asymmetric Elasticity. Oxford, Pergamon Press, 1986, viii+383 pp.
- Radayev Yu. N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 3, pp. 504–517 (In Russian). EDN: YOYJQD. DOI: https://doi.org/10.14498/vsgtu1635.
- Veblen O., Thomas T. Y. Extensions of relative tensors, Trans. Amer. Math. Soc., 1924, vol. 26, no. 3, pp. 373–377. DOI: https://doi.org/10.2307/1989146.
- Veblen O. Invariants of Quadratic Differential Forms, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 24. Cambridge, Cambridge Univ. Press, 1927, viii+102 pp.
- Gurevich G. B. Foundations of the Theory of Algebraic Invariants. Groningen, The Netherlands, P. Noordhoff, 1964, viii+429 pp.
- Schouten J. A. Tensor Analysis for Physicist. Oxford, Clarendon Press, 1951, 434 pp.
- Synge J. L., Schild A. Tensor Calculus. New York, Dover Publ., 1978, xi+324 pp.
- Murashkin E. V., Radayev Yu. N. Reducing natural forms of hemitropic energy potentials to conventional ones, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 4, pp. 108–115 (In Russian). EDN: DTZTJY. DOI: https://doi.org/10.37972/chgpu.2022.54.4.009.
- Murashkin E. V., Radayev Yu. N. On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 3, pp. 86–100 (In Russian). EDN: YOEHQV. DOI: https://doi.org/10.37972/chgpu.2022.53.3.010.
- Murashkin E. V. On the relationship of micropolar constitutive parameters of thermodynamic state potentials, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 1, pp. 110–121 (In Russian). EDN: JXXIAX. DOI: https://doi.org/10.37972/chgpu.2023.55.1.012.
- Murashkin E. V., Radayev Yu. N. Wave criteria for ultratropic micropolar elastic solids, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2023, no. 4, pp. 128–138 (In Russian). DOI: https://doi.org/10.37972/chgpu.2024.62.4.009.
- Radayev Yu. N. Tensors with constant components in the constitutive equations of hemitropic micropolar solids, Mech. Solids, 2023, vol. 58, no. 5, pp. 1517–1527. EDN: SQQPGJ. DOI: https://doi.org/10.3103/S0025654423700206.
- Spencer A. J. M. Theory of invariants, In: Continuum Physics, vol. 1. New York, Academic Press, 1971, pp. 240–353. DOI: https://doi.org/10.1016/B978-0-12-240801-4.50008-X.
- Nye J. F. Physical Properties of Crystals. Their Representation by Tensors and Matrices. Oxford, Clarendon Press, 1957, xv+322 pp.
- Wooster W. A. Experimental Crystal Physics. Oxford, Clarendon Press, 1957, viii+115 pp.
- Voigt W. Lehrbuch der Kristallphysik (mit Ausschluß der Kristalloptik). Leipzig, B.G. Teubner, 1928, xxvi+978 pp. (In German)
- Murashkin E. V., Radaev Y. N. Two-dimensional Nye figures for some micropolar elastic solids, Mech. Solids, 2023, vol. 58, no. 6, pp. 2254–2268. EDN: AIPHVE. DOI: https://doi.org/10.3103/s0025654423700243.
- Murashkin E. V., Radayev Yu. N. Two-dimensional Nye figures for hemitropic micropolar elastic solids, Izv. Saratov Univ. Math. Mech. Inform., 2024, vol. 24, no. 1, pp. 109–122 (In Russian). EDN: FKFRHA. DOI: https://doi.org/10.18500/1816-9791-2024-24-1-109-122.
- Murashkin E. V., Radayev Yu. N. On a method of constructing Nye figures for asymmetric theories of micropolar elasticity, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2023, no. 3, pp. 100–111 (In Russian). EDN: KSSOKR. DOI: https://doi.org/10.37972/chgpu.2023.57.3.009.
- Krylova E. Yu., Murashkin E. V., Radayev Y. N. The Nye cells and figures for athermic hemitropic, isotropic and ultraisotropic micropolar elastic solids, Mech. Solids, 2024, vol. 59, no. 3, pp. 1311–1320. DOI: https://doi.org/10.1134/S0025654424603719.
- Murashkin E. V., Radayev Y. N. A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity, Lobachevskii J. Math., 2023, vol. 44, no. 6, pp. 2440–2449. EDN: PINYDI. DOI: https://doi.org/10.1134/S1995080223060392.
- Murashkin E. V., Radayev Yu. N. Theory of Poisson’s ratio for a thermoelastic micropolar acentric isotropic solid, Lobachevskii J. Math., 2024, vol. 45, no. 5, pp. 2378–2390. EDN: ASGCQB. DOI: https://doi.org/10.1134/S1995080224602480.
- Radayev Yu. N., Murashkin E. V. Pseudotensor formulation of the mechanics of hemitropic micropolar media, Problems of Strength and Plasticity, 2020, vol. 82, no. 4, pp. 399–412 (In Russian). EDN: TODIFV. DOI: https://doi.org/10.32326/1814-9146-2020-82-4-399-412.
- Murashkin E. V., Radayev Y. N. Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space, Uchen. Zap. Kazan. Univ. Ser. Fiz.-Matem. Nauki, 2023, vol. 165, no. 4, pp. 389–403 (In Russian). EDN: HTQAHJ. DOI: https://doi.org/10.26907/2541-7746.2023.4.389-403.
- Murashkin E. V., Radayev Yu. N. Coupled thermoelasticity of hemitropic media. Pseudotensor formulation, Mech. Solids, 2023, vol. 58, no. 3, pp. 802–813. EDN: CISJLW. DOI: https://doi.org/10.3103/s0025654423700127.
- Murashkin E. V., Radayev Y. N. Heat transfer in anisotropic micropolar solids, Mech. Solids, 2023, vol. 58, no. 9, pp. 3111–3119. EDN: WBUGBA. DOI: https://doi.org/10.3103/S0025654423700255.
- Murashkin E. V., Radayev Yu. N. On the polyvariance of the base equations of coupled micropolar thermoelasticity, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2023, no. 3, pp. 112–128 (In Russian). EDN: RQUKBG. DOI: https://doi.org/10.37972/chgpu.2023.57.3.010.
- Murashkin E. V., Radayev Yu. N. On the polyvariance of the base equations of coupled micropolar thermoelasticity, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2023, no. 4, pp. 86–120 (In Russian). EDN: RQUKBG. DOI: https://doi.org/10.37972/chgpu.2023.58.4.010.
- Murashkin E. V., Radayev Y. N. On algebraic triple weights formulation of micropolar thermoelasticity, Mech. Solids, 2024, vol. 59, no. 1, pp. 555–580. EDN: GBHEKM. DOI: https://doi.org/10.1134/s0025654424700274.
- Murashkin E. V., Radayev Y. N. Thermomechanical states of gyrotropic micropolar solids, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2023, vol. 27, no. 4, pp. 659–678 (In Russian). EDN: CRRHLO. DOI: https://doi.org/10.14498/vsgtu2062.
- Rozenfel’d B. A. Mnogomernye prostranstva [Multidimensional Spaces]. Moscow, Nauka, 1966, 648 pp. (In Russian)
- Murashkin E. V., Radayev Yu. N. Algebraic algorithm for the systematic reduction of one-point pseudotensors to absolute tensors, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 1, pp. 17–27 (In Russian). EDN: ZJWFGT. DOI: https://doi.org/10.37972/chgpu.2022.51.1.002.
- Murashkin E. V., Radayev Yu. N. Covariantly constant tensors in Euclidean spaces. Elements of the theory, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2, pp. 106–115 (In Russian). EDN: FQVGRK. DOI: https://doi.org/10.37972/chgpu.2022.52.2.012.
- Murashkin E. V., Radayev Yu. N. Covariantly constant tensors in Euclidean spaces. Applications to continuum mechanics, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2, pp. 118–127 (In Russian). EDN: ESTJSA. DOI: https://doi.org/10.37972/chgpu.2022.52.2.013.
- Sushkevich A. K. Osnovy vysshei algebry [Fundamentals of Higher Algebra]. Moscow, ONTI, 1937, 476 pp. (In Russian)
- Zhilin P. A. Ratsional’naya mekhanika sploshnykh sred [Rational Continuum Mechanics Media]. St. Petersburg, Polytechn. Univ., 2012, 584 pp. (In Russian)
Supplementary files


