On determination of gradient in optimal control problems for frictionless mechanical oscillatory systems
- Authors: Zinchenko A.S.1, Nekhaev A.A.2, Romanenkov A.M.1,2
-
Affiliations:
- Moscow Aviation Institute (National Research University)
- Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
- Issue: Vol 29, No 3 (2025)
- Pages: 566-578
- Section: Short Communications
- URL: https://journal-vniispk.ru/1991-8615/article/view/349689
- DOI: https://doi.org/10.14498/vsgtu2133
- EDN: https://elibrary.ru/VCVBSZ
- ID: 349689
Cite item
Full Text
Abstract
This paper investigates the problem of gradient computation for an optimal control algorithm applied to a distributed system. The mathematical model of the system is described by an initial-boundary value problem for a linear high-order hyperbolic partial differential equation. The study considers an oscillatory process without energy dissipation. The proposed model covers a wide class of applied problems, including vibrations of strings, beams, rods, and other one-dimensional elastic mechanical systems, as well as systems reducible to these cases. By using the method of integral estimates, we prove a uniqueness theorem for the solution and derive an explicit expression for the gradient of the minimized quadratic functional.
Full Text
##article.viewOnOriginalSite##About the authors
Alexander S. Zinchenko
Moscow Aviation Institute (National Research University)
Author for correspondence.
Email: zinchenkoas@mai.ru
ORCID iD: 0000-0001-7971-4572
SPIN-code: 7948-5040
Scopus Author ID: 59124941500
ResearcherId: AAJ-2633-2020
https://www.mathnet.ru/rus/person229294
Cand. Econom. Sci.; Associate Professor; Dept. of Mathematics
Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4Aleksander A. Nekhaev
Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
Email: ganzol177@gmail.com
ORCID iD: 0009-0004-2062-7967
ResearcherId: JMR-4736-2023
https://www.mathnet.ru/rus/person230881
Research Engineer; Dept. of Mathematical Modeling of Heterogeneous Systems
Russian Federation, 119333, Moscow, Vavilova str., 44/2Alexander M. Romanenkov
Moscow Aviation Institute (National Research University); Federal Research Center “Computer Science and Control” of Russian Academy of Sciences
Email: romanaleks@gmail.com
ORCID iD: 0000-0002-0700-8465
SPIN-code: 7586-0934
Scopus Author ID: 57196480014
ResearcherId: AAH-9530-2020
https://www.mathnet.ru/rus/person29785
Cand. Techn. Sci., Associate Professor; Associate Professor; Dept. of Mathematics; Senior Researcher; Dept. of Mathematical Modeling of Heterogeneous Systems
Russian Federation, 125993, Moscow, Volokolamskoe Shosse, 4; 119333, Moscow, Vavilova str., 44/2References
- Barseghyan V. R. Optimal boundary control of a distributed heterogeneous vibrating system with given states at intermediate times, Comput. Math. Math. Phys., 2022, vol. 62, no. 12, pp. 2023–2032. EDN: RNFIXV. DOI: https://doi.org/10.1134/S096554252212003X.
- Kubyshkin V. A. Mobile control of vibrations in systems with distributed parameters, Autom. Remote Control, 2011, vol. 72, no. 10, pp. 2112–2122. EDN: PEDUVV. DOI: https://doi.org/10.1134/S0005117911100109.
- Egorov A. I., Znamenskaya L. N. Control of vibrations of coupled objects with distributed and lumped parameters, Comput. Math. Math. Phys., 2005, vol. 45, no. 10, pp. 1701–1718. EDN: LJHACF.
- Atamuratov A. G., Mikhailov I. E., Muravey L. A. The moment problem in control problems of elastic dynamic systems, Mekhatron., Avtomat., Upravl., 2016, vol. 17, no. 9, pp. 587–598 (In Russian). EDN: WMCIUZ. DOI: https://doi.org/10.17587/mau.17.587-598.
- Atamuratov A. Zh., Mikhailov I. E., Taran N. A. Numerical damping of oscillations of beams by using multiple point actuators, PNRPU Mechanics Bulletin, 2018, no. 2, pp. 5–15 (In Russian). EDN: XUGGAH. DOI: https://doi.org/10.15593/perm.mech/2018.2.01.
- Evans L. K. Uravneniya s chastnymi proizvodnymi [Partial Differential Equations]. Novosibirsk, Tamara Rozhkovskaya, 2003, 562 pp. (In Russian)
- Alraddadi I., Chowdhury M. A., Abbas M. S., et al. Dynamical behaviors and abundant new soliton solutions of two nonlinear PDEs via an efficient expansion method in industrial engineering, Mathematics, 2024, vol. 12, no. 13, 2053. EDN: AWHEGO. DOI: https://doi.org/10.3390/math12132053.
- Arguchintsev A., Poplevko V. An optimal control problem by a hybrid system of hyperbolic and ordinary differential equations, Games, 2021, vol. 12, no. 1, 23. EDN: IXNDSP. DOI: https://doi.org/10.3390/g12010023.
- Barbu T. CNN-based temporal video segmentation using a nonlinear hyperbolic PDE-based multi-scale analysis, Mathematics, 2023, vol. 11, no. 1, 245. EDN: KEHSPX. DOI: https://doi.org/10.3390/math11010245.
- Khanfer A., Bougoffa L., Alhelali N. On the sixth-order beam equation of small deflection with variable parameters, Mathematics, 2025, vol. 13, no. 5, 727. EDN: AVNCCA. DOI: https://doi.org/10.3390/math13050727.
- Dimitrov N. D., Jonnalagadda J. M. Existence of positive solutions for a class of nabla fractional boundary value problems, Fractal Fract., 2025, vol. 9, no. 2, 131. EDN: SCNVOO. DOI: https://doi.org/10.3390/fractalfract9020131.
- Kozlova E. A. Control problem for the hyperbolic equation with the characteristics having the angular coefficients of the same sign, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 1, pp. 243–247 (In Russian). EDN: PAEJSX. DOI: https://doi.org/10.14498/vsgtu1046.
- Kozlova E. A. Boundary Control Problem for the Hyperbolic System, Izv. Saratov Univ. Math. Mech. Inform., 2013, vol. 13, no. 1, pp. 51–56 (In Russian). EDN: SMXXRV. DOI: https://doi.org/10.18500/1816-9791-2013-13-1-2-51-56.
- Arguchintsev A. V., Kedrin V. S., Kedrina M. S. Variational optimality condition in the control problem of hyperbolic equations with dynamic boundary conditions, Bull. Buryat State Univ. Math., Inform., 2021, no. 1, pp. 13–23 (In Russian). EDN: PMLLOO. DOI: https://doi.org/10.18101/2304-5728-2021-1-13-23.
- Samarskiy A. A., Vabishchevich P. N. Vychislitel’naya teploperedacha [Computational Heat Transfer]. Moscow, Librokom, 2014, 784 pp. (In Russian). EDN: QJVMAV.
- Vasil’ev F. P. Metody optimizatsii [Optimization Methods], Part 2. Moscow, Moscow Center for Continuous Mathematical Education, 2011, 434 pp. (In Russian)
- Romanenkov A. M. Gradient in the problem of controlling processes described by linear pseudohyperbolic equations, Differ. Equ., 2024, vol. 60, no. 2, pp. 215–226. EDN: FGNUPM. DOI: https://doi.org/10.1134/S001226612402006X.
Supplementary files


