Априорные оценки локального разрывного метода Галеркина на разнесенных сетках для решения уравнения параболического типа в рамках однородной задачи Дирихле

ТОМ 24, №1 (2020)

Цитировать

Полный текст

Аннотация

Представлены априорные оценки точности решения однородной краевой задачи для параболического уравнения с помощью локального метода Галеркина с разрывными базисными функциями на разнесенных сетках. Дискретизация по пространству строится с помощью обращения к смешанной конечно-элементной формулировке. Производные второго порядка не могут быть согласованы напрямую в слабой вариационной формулировке, используя пространство разрывных функций. Для понижения порядка компоненты вектора потока рассматриваются как вспомогательные неизвестные искомого уравнения второго порядка. Аппроксимация строится на разнесенных сетках. Основная сетка состоит из треугольников, двойственная сетка состоит из медианных контрольных объемов вокруг узлов треугольной сетки. Аппроксимация искомой функции строится на ячейках основной сетки, в то время как аппроксимация вспомогательных неизвестных строится на ячейках двойственной сетки. Для вычисления потоков на границе между элементами используется стабилизирующий параметр. При этом поток искомой функции не зависит от вспомогательных функций, в то время как поток вспомогательных величин зависит от искомой функции. Для решения поставленной задачи в работе формулируются и доказываются необходимые леммы. В результате сформулирована и доказана основная теорема, результатом которой являются априорные оценки при решении параболического уравнения с помощью метода Галеркина с разрывными базисными функциями. Основную роль при анализе сходимости играет оценка для отрицательной нормы градиента. В работе для стабилизирующего параметра порядка $1$ показано, что порядок сходимости будет $k+{1}/{2}$, а в случае использования стабилизирующего параметра порядка $h^{-1}$ порядок сходимости увеличивается до $k+1$, когда в качестве базиса используются полиномы степени не выше $k$.

Об авторах

Руслан Викторович Жалнин

Национальный исследовательский Мордовский государственный университет имени Н. П. Огарева

кандидат физико-математических наук, доцент

Виктор Федорович Масягин

Национальный исследовательский Мордовский государственный университет имени Н. П. Огарева

Email: vmasyagin@gmail.com
кандидат физико-математических наук, без звания

Елизавета Евгеньевна Пескова

Национальный исследовательский Мордовский государственный университет имени Н. П. Огарева

без ученой степени, младший научный сотрудник

Владимир Федорович Тишкин

Институт прикладной математики им. М.В. Келдыша Российской академии наук

Email: tishkin@imamod.ru, v.f.tishkin@mail.ru
доктор физико-математических наук, профессор

Список литературы

  1. Масягин В. Ф., Жалнин Р. В., Тишкин В. Ф., "О применении разрывного конечно-элементного метода Галеркина для решения двумерных уравнений диффузионного типа на неструктурированных сетках", Журнал СВМО, 15:2 (2013), 59-65
  2. Жалнин Р. В., Ладонкина М. Е., Масягин В. Ф., Тишкин В. Ф., "Об одном способе решения уравнений диффузионного типа с помощью разрывного метода Галeркина на неструктурированной сетке", Журнал СВМО, 16:2 (2014), 7-13
  3. Жалнин Р. В., Ладонкина М. Е., Масягин В. Ф., Тишкин В. Ф., "Решение трехмерных уравнений теплопроводности с помощью разрывного метода Галeркина на неструктурированных сетках", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 19:3 (2015), 523-533
  4. Жалнин Р. В., Ладонкина М. Е., Масягин В. Ф., Тишкин В. Ф., "Решение задач о нестационарной фильтрации вещества с помощью разрывного метода Галеркина на неструктурированных сетках", Ж. вычисл. матем. и матем. физ., 56:6 (2016), 989-998
  5. Жалнин Р. В., Ладонкина М. Е., Масягин В. Ф., Тишкин В. Ф., "Применение разрывного метода Галеркина для решения параболических задач в анизотропных средах на треугольных сетках", Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 9:3 (2016), 144-151
  6. Жалнин Р. В., Масягин В. Ф., "Априорные оценки для метода Галеркина с разрывными базисными функциями на разнесенных сетках для однородной задачи Дирихле", Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 11:2 (2018), 29-43
  7. Cockburn B., Shu C.-W., "The local discontinuous Galerkin finite element method for convection-diffusion systems", SIAM J. Numer. Anal., 35:6 (1998), 2440-2463
  8. Bassi F., Rebay S., "A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations", J. Comp. Phys., 131:2 (1997), 267-279
  9. Cockburn B., Hou S., Shu C.-W., "TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case", Math. Comp., 54:190 (1990), 545-581
  10. Cockburn B., Lin S.-Y., Shu C.-W., "TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems", J. Comput. Phys., 84:1 (1989), 90-113
  11. Cockburn B., Shu C.-W., "TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework", Math. Comp., 52:186 (1989), 411-435
  12. Cockburn B., Lin S.-Y., Shu C.-W., "The Runge-Kutta local projection -discontinuous Galerkin method for scalar conservation laws", ESAIM: Mathematical Modelling and Numerical Analysis, 25:3 (1991), 337-361
  13. Cockburn B., Shu C.-W., "The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems", J. Comput. Phys., 141:2 (1998), 199-224
  14. Ciarlet P. G., The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, SIAM, Philadelphia, 2002, xxiii+529 pp.
  15. Castillo P., Cockburn B., Perugia I., Schötzau D., "An a priory error analysis of the local discontinuous Galerkin method for elliptic problems", SIAM J. Numer. Anal., 38:5 (2000), 1676-1706
  16. Thomee V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, 25, Springer, Berlin, 1997, x+302 pp.
  17. Rivière B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Frontiers in Applied Mathematics, SIAM, Philadelphia, 2008, xxii+178 pp.
  18. Pany A., Yadav S., "An -local discontinuous Galerkin method for parabolic integro-differential equations", J. Sci. Comput., 46:1 (2011), 71-99
  19. Babuška I., Suri M., "The version of the finite element method with quasiuniform meshes", ESAIM: Mathematical Modelling and Numerical Analysis, 21:2 (1987), 199-238
  20. Даутов Р. З., Федотов Е. М., "Абстрактная теория HDG-схем для квазилинейных эллиптических уравнений второго порядка", Ж. вычисл. матем. и матем. физ., 54:3 (2014), 463-480

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».