Пространства Соболева и краевые задачи для операторов ротор и градиент дивергенции

ТОМ 24, №2 (2020)

Цитировать

Полный текст

Аннотация

В ограниченной области $G\subset \mathbb{R}^3$ с гладкойграницей изучаются краевые и спектральные задачи для операторов $\operatorname{rot} +\lambda I$ и $\nabla \operatorname{div} +\lambda I$в пространствах Соболева. При $\lambda\neq 0$ операторы расширяются (методом Б. Вайнберга и В. Грушина) до эллиптических матриц,а краевые задачи удовлетворяют условиям эллиптичности В. Солонникова.Из теории и оценок вытекают полезные свойства решений спектральных задач. Операторы $\nabla \operatorname{div}$ и $ \operatorname{rot}$ имеют самосопряженныерасширения $\mathcal{N}_d$ и $\mathcal{S}$ в ортогональныеподпространства $\mathcal{A}_{\gamma }$ и $V^0$ потенциальных и вихревых полей в $\mathbf{L}_{2}(G)$, а их собственные векторы задают ортогональные базисы в $\mathcal{A}_{\gamma }$ и $V^0$, элементы которых представляются рядами Фурье, а операторы — преобразованиями рядов.Определены аналоги пространств Соболева $\mathbf{A}^{2k}_{\gamma }$ и $\mathbf{W}^m$ порядков $2k$ и $m$ в классах потенциальных и вихревых полей и классы $ C(2k,m)$ их прямых сумм. Доказано, что при $\lambda\neq \operatorname{Sp}(\operatorname{rot})$ оператор $ \operatorname{rot}+\lambda I$ отображает класс $C(2k,m+1)$ на класс $C(2k,m)$ взаимно однозначно и непрерывно, а при $\lambda\neq \operatorname{Sp}(\nabla \operatorname{div})$ оператор $\nabla \operatorname{div}+\lambda I$ отображает $C(2(k+1), m)$ на $C(2k,m)$ соответственно.

Об авторах

Ромэн Семенович Сакс

Институт математики с вычислительным центром Уфимского федерального исследовательского центра РАН

Email: romen-saks@yandex.ru
доктор физико-математических наук, профессор

Список литературы

  1. Соболев С. Л., Введение в теорию кубатурных формул, Наука, М., 1974, 810 с.
  2. Михайлов В. П., Дифференциальные уравнения в частных производных, Наука, М., 1975, 392 с.
  3. Weyl H., "The method of orthogonal projection in potential theory", Duke Math. J., 7:1 (1940), 411-444
  4. Borchers W., Sohr H., "On the equations and with zero boundary conditions", Hokkaido Math. J., 19:1 (1990), 67-87
  5. Соболев С. Л., "Об одной новой задаче математической физики", Изв. АН СССР. Сер. матем., 18:1 (1954), 3-50
  6. Ладыженская O. A., Математические вопросы динамики вязкой несжимаемой жидкости, Наука, М., 1970, 288 с.
  7. Friedrichs K. O., "Differential forms on riemannian manifolds", Comm. Pure Appl. Math., 8:2 (1955), 551-590 pp.
  8. Быховский Э. Б., Смирнов Н. В., "Об ортогональном разложении пространства вектор-функций, квадратично суммируемых по заданной области, и операторах векторного анализа", Математические вопросы гидродинамики и магнитной гидродинамики для вязкой несжимаемой жидкости, Сборник работ, Тр. МИАН СССР, 59, Изд-во АН СССР, М.-Л., 1960, 5-36
  9. Yoshida Z., Giga Y., "Remarks on spectra of operator rot", Math. Z., 204 (1990), 235–245
  10. Зорич В. А., Математический анализ. Часть II, Наука, М., 1984, 640 с.
  11. Солонников В. А., "Переопределенные эллиптические краевые задачи", Краевые задачи математической физики и смежные вопросы теории функций. 5, Зап. научн. сем. ЛОМИ, 21, Изд-во «Наука», Ленинград. отд., Л., 1971, 112-158
  12. Сакс Р. С., "О краевых задачах для системы ", Дифференц. уравнения, 8:1 (1972), 126-133
  13. Волевич Л. Р., "Разрешимость краевых задач для общих эллиптических систем", Матем. сб., 68(110):3 (1965), 373-416
  14. Bourguignon J. P., Brezis H., "Remarks on the Euler equation", J. Funct. Anal., 15:4 (1974), 341-363
  15. Foias C., Temam R., "Remarques sur les equations de Navier-Stokes stationnaireset les phenomènes successifs de bifurcation", Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, 5:1 (1978), 29-63
  16. Вайнберг Б. Р., Грушин В. В., "О равномерно неэллиптических задачах. I", Матем. сб., 72(114):4 (1967), 602-636
  17. Сакс Р. С., "Решение спектральных задач для операторов ротора и Стокса", Уфимск. матем. журн., 5:2 (2013), 63-81
  18. Владимиров В. С., Уравнения математической физики, Наука, М., 1988, 512 с.
  19. Сакс Р. С., "Оператор градиент дивергенции и пространства Соболева", Динамические системы, 8:4 (2018), 385-407
  20. Сакс Р. С., "О свойствах обобщенно эллиптических псевдодифференциальных операторов на замкнутых многообразиях", Краевые задачи математической физики и смежные вопросы теории функций. 28, Зап. научн. сем. ПОМИ, 243, ПОМИ, СПб., 1997, 215-269
  21. Temam R. I., Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984
  22. Woltjer L., "A theorem on force-free magnetic fields", Proc. Nat. Acad. Sci., 44 (1958), 489-491
  23. Taylor J. B., "Relaxation of toroidal plasma and generation of reverse magnetic fields", Phys. Rev. Letters, 33:19 (1974), 1139-1141
  24. Arnold V. I., "Sur la topologie des ecoulements stationnaires des fluides parfaits", C. R. Acad. Sci. Paris, 261 (1965), 17-20
  25. Козлов В. В., Общая теория вихрей, Удмурт. гос. унив., Ижевск, 1998, 240 с.
  26. Woltjer L., "The Crab Nebula", Bull. Astron. Inst. Netherlands, 14 (1958), 39-80
  27. "The spectrum of the operator on spherically symmetric domains", Physics of Plasmas, 7 (2000), 2766-2775
  28. Сакс Р. С., "Спектр оператора вихря в шаре при условии непротекания и собственные значения колебаний упругого шара, закрепленного на границе", Труды конф. «Комплексный анализ, дифференциальные уравнения и смежные вопросы», IV. Прикладная математика, Уфа, 2000, 61-68
  29. Saks R. S., "On the spectrum of the operator ", Progress in Analysis, Proceedings of the 3rd ISAAC Congress (Berlin, Germany, 20–25 August 2001), v. 1, 2003, 811-819
  30. Сакс Р. С., "Собственные функции операторов ротора, градиента дивергенции и Стокса. Приложения", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013, № 2(31), 131-146
  31. Сакс Р. С., "Глобальные решения уравнений Навье-Стокса в равномерно вращающемся пространстве", ТМФ, 162:2 (2010), 196-215
  32. Сакс Р. С., Хайбуллин А. Г., "Об одном методе численного решения задачи Коши для уравнений Навье-Стокса и рядах Фурье оператора ротор", Докл. РАН, 429:1 (2009), 22-27
  33. Сакс Р. С., "Задача Коши для уравнений Навье-Стокса, метод Фурье", Уфимск. матем. журн., 3:1 (2011), 53-79
  34. Исламов Г. Г., "Об одном классе векторных полей", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 19:4 (2015), 680-696
  35. Боговский М. Е., "Решение некоторых задач векторного анализа, связанных с операторами и ", Труды семинара С. Л. Соболева, 1980, № 1, 5–40
  36. Масленникова В. Н., Боговский М. Е., "Аппроксимация потенциальных и соленоидальных векторных полей", Сиб. матем. журн., 24:5 (1983), 149–171
  37. Heywood J. G., "On uniquness questions in theory of viscous flow", Acta Math., 136:2 (1976), 61-102
  38. Сакс Р. С., "Ортогональные подпространства пространства и самосопряженные расширения операторов ротора и градиента дивергенции", Докл. РАН, 462:3 (2015), 278-282
  39. Сакс Р. С., "Оператор градиент дивергенции в ", Докл. РАН, 462:5 (2015), 61-65
  40. Сакс Р. С., "Оператор ротор в пространстве ", Таврический вестник информатики и математики, 2015, № 1, 87-103

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».