Couette flow of hot viscous gas

Cover Page

Cite item

Full Text

Abstract

A new exact solution is found for the equations of motion of a viscous gas for a stationary shear flow of hot (800–1500 K) gas between two parallel plates moving at different speeds (an analog of the incompressible Couette flow). One of the plates was considered thermally insulated. For the dependence of the coefficient of viscosity on temperature, the Sutherland formula is adopted. Unlike other known exact solutions, instead of a linear association between the viscosity and thermal conductivity coefficients, a more accurate formula was used to calculate the thermal conductivity coefficient, having the same accuracy in the temperature range under consideration as the Sutherland formula (2 %). Using the obtained exact solution, the qualitative effect of compressibility on the friction stress and the temperature, and velocity profiles were investigated. It is shown that the compressibility of the gas leads to an increase in the friction stress, if one of the plates is thermally insulated. The new exact solution was compared with the known exact solution (Golubkin, V.N. & Sizykh, G.B., 2018) obtained using the Sutherland formula for the viscosity coefficient and the Reynolds analogy for the thermal conductivity coefficient. It was found that both solutions lead to the same conclusions about the qualitative effect of compressibility on the friction stress and on the temperature and velocity profiles. However, the increase in friction stress caused by compressibility of the gas turned out to be underestimated twice when using the Reynolds analogy. This shows that the assumption of a linear relationship between the coefficients of viscosity and thermal conductivity can lead to noticeable quantitative errors.

About the authors

Aleksandr Nickolaevich Khorin

Moscow Institute of Physics and Technology (National Research University)

without scientific degree, no status

Anastasia Anatolevna Konyukhova

Moscow Institute of Physics and Technology (National Research University)

without scientific degree, no status

References

  1. Couette M., "Etudes sur le frottement des liquides", Ann. Chim. Phys., Ser. 6, 21 (1890), 433-510
  2. Schlichting H., Gersten K., Grenzschicht-Theorie, Springer-Verlag, Berlin, 2006
  3. Лойцянский Л. Г., Механика жидкости и газа, Гостехиздат, М.-Л., 1950
  4. White F., Viscous Fluid Flow, Mcgraw-Hill Series in Mechanical Engineering Book Series, McGraw Hill, New York, 2006
  5. Кочин Н. Е., Кибель И. А., Розе Н. В., Теоретическая гидромеханика. Ч. II., Физматлит, М., 1963
  6. Гродзовский Г. Л., "Течение вязкого газа между двумя движущимися параллельными стенками и между двумя вращающимися цилиндрами", ПММ, 19:1 (1955), 99-102
  7. Жмулин Е. М., "Течение вязкого газа между двумя движущимися параллельными пластинами", Уч. записки ЦАГИ, 2:4 (1971), 31-37
  8. Rogers G. F. C., Mayhew Y. R., Thermodynamic and Transport Properties of Fluids: S.I. Units, Blackwell, Malden, USA, 1995
  9. Голубкин В. Н., Сизых Г. Б., "О сжимаемом течении Куэтта", Уч. записки ЦАГИ, 49:1 (2018), 27-38
  10. Брутян М. А., Крапивский П. Л., "Точные решения стационарных уравнений Навье-Стокса вязкого теплопроводного газа для плоской струи из линейного источника", ПММ, 82:5 (2018), 644-656
  11. Брутян М. А., Ибрагимов У. Г., "Автомодельные и неавтомодельные течения вязкого газа, истекающего из вершины конуса", Труды МФТИ, 10:4 (2018), 113-121
  12. Bosnyakov S., Mikhaylov S. V., Morozov A. N., et al., "Implementation of high-order discontinuous Galerkin method for solution of practical tasks in external aerodynamics and aeroacoustics", N. Kroll, C. Hirsch, F. Bassi, C. Johnston, K. Hillewaert (eds.), IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 128, Springer, Cham, 2015, 337-379
  13. Bosnyakov S., Mikhaylov S. V., Podaruev V. Yu., et al., "Application of high-order discontinuous Galerkin method to LES/DES test cases using computers with high number of cores", 23rd AIAA Computational Fluid Dynamics Conference (AIAA Aviation 2017, USA, Denver, Colorado, 5-9 June 2017), 2017, 2017-3943
  14. Егоров И. В., Новиков А. В., "Прямое численное моделирование ламинарно-турбулентного обтекания плоской пластины при гиперзвуковых скоростях потока", Ж. вычисл. матем. и матем. физ., 56:6 (2016), 1064-1081
  15. Егоров И. В., Пальчековская Н. В., Шведченко В. В., "Влияние пространственных возмущений сверхзвукового потока на тепловой поток к поверхности затупленных тел", ТВТ, 53:5 (2015), 713-726
  16. Голубкин В. Н., Сизых Г. Б., "Течение вязкого газа между вертикальными стенками", ПММ, 82:5 (2018), 657-667

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».