The problem with shift for a degenerate hyperbolic equation of the first kind

Cover Page

Cite item

Full Text

Abstract

For a degenerate first-order hyperbolic equation of the second order containing a term with a lower derivative, we study two boundary value problems with an offset that generalize the well-known first and second Darboux problems. Theorems on an existence of the unique regular solution of problems are proved under certain conditions on given functions and parameters included in the formulation of the problems under study. The properties of all regular solutions of the equation under consideration are revealed, which are analogues of the mean value theorems for the wave equation.

About the authors

Zhiraslan A. Balkizov

Institute of Applied Mathematics and Automation
of Kabardin-Balkar Scientific Centre of RAS

Author for correspondence.
Email: giraslan@yandex.ru
ORCID iD: 0000-0001-5329-7766
SPIN-code: 1725-3008
Scopus Author ID: 57194853815
ResearcherId: K-2347-2018
http://www.mathnet.ru/rus/person41451

Cand. Phys. & Math. Sci.; Leading Researcher; Dept. of Mixed Type Equations

89 a, Shortanova st., Nal’chik, 360000, Russian Federation

References

  1. Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives: Theory and Applications. New York, Gordon and Breach, 1993, xxxvi+976 pp.
  2. Nakhushev A. M. Drobnoe ischislenie i ego primenenie [Fractional Calculus and Its Applications]. Moscow, Fizmatlit, 2003, 272 pp. (In Russian)
  3. Smirnov M. M. Vyrozhdaiushchiesia giperbolicheskie uravneniia [Degenerate Hyperbolic Equations]. Minsk, Vysh. shk., 1977, 160 pp. (In Russian)
  4. Bitsadze A. V. Uravneniia smeshannogo tipa [Equations of Mixed Type]. Moscow, USSR Acad. Sci., 1959, 164 pp. (In Russian)
  5. Luikov A. V. Application of the methods of thermodynamics of irreversible processes to the investigation of heat and mass transfer, J. Eng. Phys., 1965, vol. 9, no. 3, pp. 189–202. https://doi.org/10.1007/BF00828333.
  6. Bitsadze A. V. Nekotorye klassy uravnenii v chastnykh proizvodnykh [Some Classes of Partial Differential Equations]. Moscow, Nauka, 1981, 448 pp. (In Russian)
  7. Nakhushev A. M. The Darboux problem for degenerate hyperbolic equations, Differ. Uravn., 1971, vol. 7, no. 1, pp. 49–56 (In Russian).
  8. Nakhushev A. M. Uravneniia matematicheskoi biologii [Equations of Mathematical Biology]. Moscow, Vyssh. shk., 1995, 301 pp. (In Russian)
  9. Bers L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surveys in Applied Mathematics, vol. 3. New York, John Wiley & Sons, 1958, xv+278 pp.
  10. Frankl’ F. I. Izbrannye trudy po gazovoi dinamike [Selected Works in Gas Dynamics]. Moscow, Nauka, 1973, 711 pp. (In Russian)
  11. Gellerstedt S. Sur une équation linéaire aux dérivées partielles de type mixte, Ark. Mat. Astron. Fys. A, 1937, vol. 25, no. 29, pp. 1–23.
  12. Kal’menov T. Sh. A criterion for the uniqueness of the solution of the Darboux problem for a certain degenerate hyperbolic equation, Differ. Uravn., 1971, vol. 7, no. 1, pp. 178–181 (In Russian).
  13. Kal’menov T. Sh. The Darboux problem for a certain degenerate equation, Differ. Uravn., 1974, vol. 10, no. 1, pp. 59–68 (In Russian).
  14. Kal’menov T. Sh. A criterion for the continuity of the solution of the Goursat problem for a certain degenerate equation, Differ. Uravn., 1972, vol. 8, no. 1, pp. 41–54 (In Russian).
  15. Balkizov Zh. A. The boundary value problem for a degenerate hyperbolic equation in the area, Izv. Vuz. Severo-Kavkaz. Region. Ser. Estestv. Nauki, 2016, no. 1(189), pp. 5–10 (In Russian). https://doi.org/10.18522/0321-3005-2016-1-5-10.
  16. Balkizov Zh. A. The first boundary value problem for a degenerate hyperbolic equation, Vladikavkaz. Mat. Zh., 2016, vol. 18, no. 2, pp. 19–30 (In Russian).
  17. Kirichenko S. V. A mixed problem with integral condition for a degenerative equation of the hyperbolic type, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2011, vol. 17, no. 8, pp. 29–36 (In Russian). https://doi.org/10.18287/2541-7525-2011-17-8-29-36.
  18. Repin O. A., Kumykova S. K. On a problem with generalized operators of fractional differentiation for a degenerated inside a domain hyperbolic equation, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2012, vol. 18, no. 9, pp. 52–60 (In Russian). https://doi.org/10.18287/2541-7525-2012-18-9-52-60.
  19. Repin O. A., Kumykova S. K. A boundary-value problem with shift for a hyperbolic equation degenerate in the interior of a region, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1(34), pp. 37–47 (In Russian). https://doi.org/10.14498/vsgtu1280.
  20. Repin O. A., Kumykova S. K. On a class of nonlocal problems for hyperbolic equations with degeneration of type and order, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), pp. 22–32 (In Russian). https://doi.org/10.14498/vsgtu1348.
  21. Ehrgashev T. G. Generalized solutions of the degenerate hyperbolic equation of the second kind with a spectral parameter, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46, pp. 41–49 (In Russian). https://doi.org/10.17223/19988621/46/6.
  22. Makaova R. Kh. A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, vol. 21, no. 4, pp. 651–664 (In Russian). https://doi.org/10.14498/vsgtu1574.
  23. Sabitov K. B., Zaitseva N. V. Initial-boundary value problem for hyperbolic equation with singular coefficient and integral condition of second kind, Lobachevskii J. Math., 2018, vol. 39, no. 9, pp. 1419–1427. https://doi.org/10.1134/S1995080218090299.
  24. Sabitov K. B., Zaitseva N. V. The second initial-boundary value problem for a B-hyperbolic equation, Russian Math. (Iz. VUZ), 2019, vol. 63, no. 10, pp. 66–76. https://doi.org/10.3103/S1066369X19100086.
  25. Sabitov K. B., Sidorov S. N. Initial-boundary-value problem for inhomogeneous degenerate equations of mixed parabolic-hyperbolic type, J. Math. Sci., 2019, vol. 236, no. 6, pp. 603–640. https://doi.org/10.1007/s10958-018-4136-y.
  26. Urinov A. K., Okboev A. B. Modified Cauchy problem for one degenerate hyperbolic equation of the second kind, Ukr. Math. J., 2020, vol. 72, no. 1, pp. 114–135. https://doi.org/10.1007/s11253-020-01766-1.
  27. Makaova R. Kh. Boundary-value problem for a third-order hyperbolic equation that is degenerate inside a domain and contains the Aller operator in the principal part, J. Math. Sci., 2020, vol. 250, pp. 780–787. https://doi.org/10.1007/s10958-020-05043-1.
  28. Kozhanov A. I. Initial-boundary value problems for degenerate hyperbolic equations, Sib. Èlektron. Mat. Izv., 2021, vol. 18, pp. 43–53 (In Russian). https://doi.org/10.33048/semi.2021.18.004.
  29. Nakhushev A. M. Ob odnom klasse lineinykh kraevykh zadach dlia giperbolicheskogo i smeshannogo tipov uravnenii vtorogo poriadka [On a Class of Linear Boundary Value Problems for Second Order Hyperbolic and Mixed Type Equations]. Nal’chik, El’brus, 1992, 155 pp. (In Russian)
  30. Репин О. А. Краевые задачи со смещением для уравнений гиперболического и смешанного типов. Самара, Саратовск. гос. унив., Самарск. фил., 1992, 164 с.
  31. Кальменов Т. Ш. Краевые задачи для линейных уравнений в частных производных гиперболического типа. Шымкент, Гылая, 1993, 328 с.
  32. Nakhushev A. M. Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with Shifts for Partial Differential Equations]. Moscow, Nauka, 2006, 287 pp. (In Russian)
  33. Sabitov K. B. K teorii uravnenii smeshannogo tipa [On the Theory of Mixed-Type Equations]. Moscow, Fizmatlit, 2014, 301 pp. (In Russian)
  34. Sabitov K. B. Priamye i obratnye zadachi dlia uravnenii parabolo-giperbolicheskogo tipa [Direct and Inverse Problems for Equations of Mixed Parabolic-Hyperbolic Type]. Ufa, Gilem, 2015, 240 pp. (In Russian)
  35. Nakhushev A. M. A new boundary value problem for a degenerate hyperbolic equation, Sov. Math., Dokl., 1969, vol. 10, no. 4, pp. 935–938.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».