Quantum evolution in terms of mechanical motion

Cover Page

Cite item

Full Text

Abstract

Quantum tunneling is considered from the point of view of local realism. It is concluded that a quantum object tunneling through a potential barrier cannot be interpreted as a point-like particle because such an interpretation generates a contradiction with the impossibility of faster-than-light motion. Such a contradiction does not arise if a quantum object is considered as a continuous medium formed by the fields of matter. The dynamics law of the mechanical motion of these matter fields is derived from the quantum evolution law in the path integral form. The analysis of tunneling shows that this dynamics law has a form of the principle of least action on a complex time variable. The approach used here is not only a physical interpretation of quantum tunneling consistent with special relativity but is also applicable to the description of a wide range of quantum phenomena for which traditional research methods are impracticable.

About the authors

Alexey Yu. Samarin

Samara State Technical University

Author for correspondence.
Email: samarin.ay@samgtu.ru
ORCID iD: 0000-0001-7640-3875
SPIN-code: 1302-4639
Scopus Author ID: 56669973500
http://www.mathnet.ru/rus/person42489

Cand. Phys. & Math. Sci.; Associate Professor; Dept. of General Physics and Physics of Oil and Gas Production

Russian Federation, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Einstein A., Podolsky B., Rosen N. Can quantum mechanics description of physical reality be considered complete?, Phys. Rev., 1935, vol. 47, no. 10, pp. 777–780. https://doi.org/10.1103/PhysRev.47.777.
  2. von Neumann J. Mathematical Foundations of Quantum Mechanics. Berlin, Springer, 1996, x+262 pp. https://doi.org/10.1007/978-3-642-61409-5.
  3. Clouser J. F., Shimony A. Bell’s theorem. Experimental tests and implications, Rep. Prog. Phys., 1978, vol. 41, no. 12, pp. 1881–1927. https://doi.org/10.1088/0034-4885/41/12/002.
  4. Clauser J. F., Hornen M. A., Shimony A., Holt R. A. Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., 1969, vol. 23, no. 15, pp. 880–884. https://doi.org/10.1103/PhysRevLett.23.880.
  5. Freedman S. J., Clauser J. F. Experimental test of local hidden-variable theories, Phys. Rev. Lett., 1972, vol. 28, no. 14, pp. 938–941. https://doi.org/10.1103/PhysRevLett.28.938.
  6. Aspect A., Grangier P., Roger G. Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A new violation of Bell’s inequalities, Phys. Rev. Lett., 1982, vol. 49, no. 2, pp. 91–94. https://doi.org/10.1103/PhysRevLett.49.91.
  7. Aspect A. Bell’s inequality test: More ideal than ever, Nature, 1999, vol. 398, no. 6724, pp. 189–190. https://doi.org/10.1038/18296.
  8. Bell J. S. On the Einstein Podolsky Rosen paradox, Physics, 1964, vol. 1, no. 3, pp. 195–200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.
  9. Eberhard P. H. Bell’s theorem and the different concepts of locality, Nuov. Cim. B, 1978, vol. 46, no. 2, pp. 392–419. https://doi.org/10.1007/bf02728628.
  10. Ghirardi G. C., Weber T. Quantum mechanics and faster-than-light communication: Methodological considerations, Nuov. Cim. B, 1983, vol. 78, no. 1, pp. 9–20. https://doi.org/10.1007/BF02721378.
  11. Gisin N. Stochastic quantum dynamics and relativity, Helvetica Physica Acta, 1989, vol. 62, no. 4, pp. 363–371. https://doi.org/10.5169/seals-116034.
  12. MacColl L. A. Note on the transmission and reflection of wave packets by potential barriers, Phys. Rev., 1932, vol. 40, no. 4, pp. 621–626. https://doi.org/10.1103/PhysRev.40.621.
  13. Hartman T. E. Tunneling of a wave packet, J. Appl. Phys., 1962, vol. 33, no. 12, pp. 3427–3433. https://doi.org/10.1063/1.1702424.
  14. Ni H., Saalmann U., Rost J.-M. Tunneling ionization time resolved by backpropagation, Phys. Rev. Lett, 2016, vol. 117, no. 2, 02300. https://doi.org/10.1103/physrevlett.117.023002.
  15. Satya Sainadh U., et al. Attosecond angular streaking and tunnelling time in atomic hydrogen, Nature, 2019, vol. 568, no. 7750, pp. 75–77. https://doi.org/10.1038/s41586-019-1028-3.
  16. Steinberg A. M. How much time does a tunneling particle spend in the barrier region?, Phys. Rev. Lett., 1995, vol. 74, no. 13, pp. 2405–2409. https://doi.org/10.1103/PhysRevLett.74.2405.
  17. Zimmermann T., Mishra S., Doran B. R., Gordon D. F., Landsman A. S. Tunneling time and weak measurement in strong field ionization, Phys. Rev. Lett., 2016, vol. 116, no. 23, 233603. https://doi.org/10.1103/PhysRevLett.116.233603.
  18. Born M. Zur Quantenmechanik der Stoßvorgänge, Z. Phys., 1926, vol. 37, no. 2, pp. 863–867 (In German). https://doi.org/10.1007/BF01397477.
  19. Schrödinger E. Der stetige Ubergang von der Mikro- zur Makromechanik, Naturwissenschaften, 1926, vol. 14, no. 28, pp. 664–666 (In German). https://doi.org/10.1007/BF01507634.
  20. Bell J. S. Against ‘measurement’, Phys. World, 1990, vol. 3, no. 8, pp. 33–40. https://doi.org/10.1088/2058-7058/3/8/26.
  21. Samarin A. Yu. Nonlinear dynamics of open quantum systems, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 2, pp. 214–224, arXiv: 1706.09405 [quant-ph]. https://doi.org/10.14498/vsgtu1582.
  22. Samarin A. Yu. Quantum evolution as a usual mechanical motion of peculiar continua, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol. 24, no. 1, pp. 7–21. https://doi.org/10.14498/vsgtu1724.
  23. Feynman R. P. Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys., 1948, vol. 20, no. 2, pp. 367–387. https://doi.org/10.1103/RevModPhys.20.367.
  24. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. Mineola, NY, Dover Publ., 2010, xii+371 pp.
  25. Zinn-Justin J. Path Integrals in Quantum Mechanics. Oxford, Oxford Univ. Press, 2005, xiii+318 pp.
  26. Kac M. Probability and Related Topics in Physical Sciences, Lectures in Applied Mathematics, vol. 1A. London, New York, Interscience Publ., 1959, xiii+266 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».